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Abstract

Programming languages need to evolve constantly otherwise they fall out of favor, be-
come neglected and lost. The hard part of growing a language is to make the changes
as little disruptive as possible. Each change has to be carefully reviewed for its impact
on the ecosystem. However, until recently, language designers and engineers had only
a few means to understand the impact of a programming language change. The cloud
code-hosting websites have changed that by making code a shared resource and giv-
ing everyone access to a huge number of open-source projects. That has opened whole
new opportunities in language evolution. We can use program analysis to get empirical
evidence about how language is used in real-world code.

This thesis is based on the published research done at the PRL-PRG research labo-
ratory since summer 2017. It presents our experience in conducting large-scale program
analyses of public code repositories. Concretely, we include three different analyses with
which we try to answer the following questions: (1) How well can automated trace-based
unit test extraction actually work in practice for R? The aim is to reduce the burden of writ-
ing a comprehensive unit test suites in the cases where it may be possible for a tool to
extract them automatically from a client code. (2) What expressive power do we need to
ascribe types to R function? The goal is to retrofit a type system in R that would bene-
fit the users in making the code more reliable and increase our assurance data analysis
for which R is used so much. (3) How are Scala implicits used in the wild? The aim is to
provide empirical evidence on the use and misuse of this distinct Scala feature.

To answer this, we have developed a complete toolchain for doing dynamic pro-
gram analysis in R and a static analyzer that can extract implicit usage from Scala code.
We then evaluated the program analyses on large corpora spanning millions of lines of
R and Scala code. The results are: (1) A tool that increased the test code coverage from
19% to 53% on a corpus of 1,500 R packages. (2) A type language, which found a com-
promise between simplicity and usefulness, that was used to ascribe type signatures
to 25,000 functions from the most widely used R packages. (3) A study that is both a
retrospective on introducing implicits into the wild and a means to inform designers of
future languages of how people use and misuse them.

Keywords: program analysis, language evolution, test extraction, program tracing, type
declarations, dynamic languages, corpora analysis, implicit parameters, implicit con-
version, R, Scala.
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CHAPTER 1
Introduction

1.1 Context and Motivation

Much like natural languages that allow us to talk to one another, programming lan-
guages give us a way to communicate with computers. Since the inception of the
lambda calculus in the 1930s, thousands of languages have been created.1 The majority
of these are no longer relevant, had been deprecated, superseded, or simply fell out of
favor, but many are still in daily use. And much like natural languages, they also need
to evolve constantly. If they do not, they will follow the fate of Ada, Algol, Pascal, or
Smalltalk, languages that once were popular but eventually became neglected and lost.

Programming language evolution. There are different forces behind programming
language evolution [Urma, 2017]. On the one hand, they need to track the changes in the
hardware evolution and the trends in both the industry and academia. For example, in
recent years, we have seen a continuous adoption of functional-programming concepts
into traditionally object-oriented imperative programming languages such as C++ (e.g.,
λ−functions in C++11, polymorphic λ−functions in C++14, generic programming us-
ing concepts in C++20) or Java (e.g., parametric-polymorphism in Java 5, λ−functions
with map-reduce inspired stream API in Java 8, pattern-matching and records in Java
14). On the other hand, languages also need to deal with design shortcomings and bugs.
That includes mistakes in the API or simplifying commonly recurring verbose code pat-
terns. For example, in version 5, Java added a for-each construct, which significantly
reduced the necessary setup for collection traversals. In version 6, the diamond opera-
tor improved the type inference for generic instance creation, and in version 10, the new
var keyword introduced local-type inference.

The hard part of growing a programming language is to make the changes as little
disruptive as possible. As Martin Buchholz, who has been maintaining JDK over the
last two decades, puts it, “Every change is an incompatible change. A risk/benefit analysis is

1Diarmuid Pigott’s Online Historical Encyclopaedia of Programming Languages (hopl.info) lists over
8,000 programming languages.
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1. INTRODUCTION

always required” [Darcy, 2008]. Not only the compiler and possibly the runtime system
need to be changed, but users need to be notified, libraries updated and documentation
invalidated including books and stackoverflow.com-like discussion forum. For instance,
before Java moved to the 6-months released cycle in 2018, Oracle, the main Java sponsor,
estimated the cost of every new release to $50M. There are over 5K books, 1.7M ques-
tions on stackoverflow.com, and 3.5M public repositories on github.com, which all become
less relevant with every new Java version unless updated.

Sometimes, the change (or the changes) becomes too big or too disturbing that it
spawns a new major version of the language that is partially backward-incompatible
with the old one. This is the most drastic way of a language evolution and puts a sub-
stantial load to the whole community. The canonical example is the Python 2 to Python
3 transition, which has been ongoing for the past 12 years. Even though Python 2 is
no longer maintained it is still actively used2 and thus many of the libraries and appli-
cations still need to support both versions. This comes with a significant maintenance
overhead (e.g., releasing libraries for the two versions, back-porting Python 3 features
into Python 2).

Another example is Scala. With the experience from Scala 2, the team at EPFL has
redesigned the language, and the resulting Scala 3 shall be released next year. While the
new language tries to be mostly compatible with the old one, some migration effort will
be needed. Therefore, part of the community is wondering if the transition to Scala 3 will
be similarly slow and painful as the Python’s was. It is hard to predict the adoption of
the new language, but two things are different this time. First, Scala is a statically typed
language. The type checker can catch many errors at compile time. Moreover, thanks to
static typing, large portions of code can be automatically rewritten using static analysis
tools such as SCALAMETA3 or SCALAFIX4. Second, and perhaps more important, we
now have access to an incredible amount of code.

Big code. Until recently, language designers and implementers had few means to un-
derstand the impact of a change in programming language. They had to rely on com-
munity surveys, mailing lists, and intuition to assess a language change. The cloud
code-hosting websites such as GitHub, GitLab, or BitBucket have changed that. They
made code a shared resource giving everyone access to a huge number of open-source
projects written in all possible languages. For example, GitHub itself has over 30 mil-
lion users and hosts more than 100M projects.5 This opens whole new opportunities in
language evolution because we can get empirical evidence from real-world code. We
can ask how much code will be affected by deprecating some language feature or li-
brary function. We can look for patterns and how certain language features are used to
figure out if there is perhaps a better way to achieve the same. In general, we can mine
these large code repositories for insights about how language features or library API is

2https://www.jetbrains.com/lp/python-developers-survey-2019/
3Library to read, analyze, transform and generate Scala programs, cf. https://scalameta.org/
4Rewrite and linting tool for Scala, cf. https://github.com/scalacenter/scalafix
5https://github.blog/2018-11-08-100m-repos/
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1.1. Context and Motivation

used in the real world. This can help us better estimate the risks/benefits that Martin
Buchholz talked about.

For example, in the case of Scala, we no longer need to guess how many projects
cannot be migrated automatically. Instead, we can get hundreds of thousands of Scala
projects just from GitHub and try.

Analyzing code repositories. Having access to source code repositories with real-
world projects is a gold mine for language researchers and engineers. Using program
analysis to mine these repositories is an increasingly important research topic. In gen-
eral, there are two complementary approaches [Ernst, 2003]. Static program analysis,
which reasons about programs behavior using information from the programs’ code
without actually running them [Møller and Schwartzbach, 2018] and dynamic program
analysis that relies on execution traces to get insights about code [Ball, 1999]. The essen-
tial difference is that static analysis tries to approximate all possible program executions
while dynamic analysis reasons about program behavior under a specific workload and
input. For static analysis, we usually need just the source code; for dynamic analysis,
we need runnable code with input.

Program analysis has been used to study a wide range of topics in public code repos-
itories. In the context of the Java programming language, for example, researchers were
looking at how method chaining is used and how to improve it [Nakamaru et al., 2020],
how program scale affects Java projects [Lopes and Ossher, 2015], how reflection is used
and how to help static analysis to resolve it [Landman et al., 2017; Barros et al., 2015],
how language features are adopted over time [Dyer et al., 2014], how unsafe API is
used and how to make it safer [Mastrangelo et al., 2015; Huang et al., 2019], or using dy-
namic analysis to check the correct usage of Java APIs [Legunsen et al., 2016], and iden-
tify Java task-parallel workloads suitable for inclusion in a domain-specific benchmark
suite [Villazón et al., 2019]. With the massive spread of web applications, JavaScript
has also received a lot of attention, despite being notably hard to analyze due to its
dynamic behavior [Richards et al., 2010] and tight coupling with DOM and Browser
API [Jensen et al., 2011]. For example, program analysis was used to study how eval

is used [Richards et al., 2011b] and how to remedy it [Meawad et al., 2012; Jensen et al.,
2012], how to predict identifier names and type annotations [Raychev et al., 2015], how
to detect race conditions in web applications [Adamsen et al., 2018], how new language
constructs such as promises are adopted [Villazón et al., 2019], or how to detect and
test breaking library changes [Mezzetti et al., 2018; Møller and Torp, 2019; Nielsen et al.,
2020].

Some languages received less attention. A notable example is the R programming
language that has been largely neglected by the programming language and software
engineering communities. That leaves much unrealized potentials, which makes it an
attractive research target. On the other hand, program analysis of R is not easy. First,
similarly to JavaScript, R also exhibits extensive dynamic behavior, which makes it a dif-
ficult target for program analysis [Morandat et al., 2012]. Since the language researchers

3



1. INTRODUCTION

have mostly overlooked it, there is practically no tooling or infrastructure for doing
program analysis of R code. Building such support invariably entails substantial engi-
neering effort. Finally, much of our intuition trained on working with general purpose
programming languages may fail us when dealing with domain-specific languages such
as the R data science language. In this case, it is only more crucial to look at how users
work with the language to make design decisions that benefit them.

This thesis. In this thesis, we present our experience in conducting large-scale program
analyses of public code repositories. We present three different analyses: two in the context
of the R programming language and one in Scala. Our group’s main research target is
R, and the work on Scala came mainly from the thesis’s author personal interest. The
two languages are quite different from one another, and so were the studies, which
allowed us to gain experience in different contexts. In the case of R, we used a dynamic
analysis, while for Scala we did a static analysis. R has centralized, curated repository
of libraries while for Scala we used the code from GitHub. For R we had to develop
the entire infrastructure from scratch. For Scala, we could rely on the compiler and its
existing plugin infrastructure and tools. On the other hand, they share a general notion
of a large scale analysis. For both we had collected a corpus of projects and assembled
a flexible and scalable data analysis pipelines that can handle millions lines of code.

1.2 Summary of Contributions

This thesis provides an overview of the research that we have done between summer
2017 — summer 2020 at the programming language research laboratory6 that is spread
between Czech Technical University in Prague and Northeastern University in Boston
and is led by prof. Jan Vitek. Concretely, we will present three large-scale program anal-
ysis studies that aim to answer questions related to the use of programming languages
in the wild. Two in the context of the R programming language which has been in the
spotlight of this research group. The last one for the Scala programming language in
collaboration with Heather Miller from Carnegie Mellon University.

In this section, we provide a summary of the key contributions done in each paper.

1.2.1 Tests from Traces: Automated Unit Test Extraction for R

By Filip Křikava and Jan Vitek, published in Proceedings of the 27th ACM International Sym-
posium on Software Testing and Analysis (ISSTA), August 2018 [Křikava and Vitek, 2018a].

In this paper we looked into how well unit tests for a target software package can be ex-
tracted from execution traces of client code, concretely for the R programming language.
The objective is to reduce the effort involved in creating test suites while minimizing the

6cf. https://prl-prg.github.com
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1.2. Summary of Contributions

number and size of individual tests, and maximizing coverage. The paper made the fol-
lowing contributions:

− We implemented a tool, GENTHAT 7 for automated extraction of unit tests for R.
− We designed a data analysis pipeline for an empirical evaluation of that tool on a

large corpus of 1,545 packages with 1,709,796 lines of code.
− We demonstrate that it is possible to improve code coverage significantly: (1) On

average, the default tests that come with the packages cover only 19%. (2) After de-
ploying GENTHAT we can increase the coverage to 53%. This increase mostly comes
from extracting tests from all the available executable artifacts in the package and the
artifacts from packages that depend on this package. (3) GENTHAT is surprisingly ac-
curate. It can reproduce 80% of the calls executed by the scripts. (4) It can also greatly
reduce the number and size of test cases retained in the extracted suite, running 1.9
times faster than package examples, tests and vignettes combined.

The paper was submitted with an artifact [Křikava and Vitek, 2018b] which got the ACM
evaluated artifact—reusable badge and received the distinguished artifact award. The tool,
GENTHAT, was also presented to the R practitioners at the international UseR!8 confer-
ence in 2018 [Krikava, 2018].

1.2.2 Designing Types for R, Empirically

By Alexi Turcotte, Aviral Goel, Filip Křikava and Jan Vitek published in Proceedings of the
ACM Programming Languages 4, OOPSLA, Article 181, November 2020 [Turcotte et al.,
2020c].

In this paper, we looked into how to retrofit a type system into R, a programming lan-
guage oriented towards interactive and exploratory programming style with poor spec-
ification and eclectic mix of features (cf. Section 2.1). This is a part of our outgoing
effort to eventually propose a type system for inclusion in the language. For this work,
we limited the scope of our investigation to ascribing types to function signatures. The
paper made the following contributions:

− We designed a simple type language that found a compromise between simplicity
and usefulness by focusing on R’s most widely used features.

− We implemented scalable and robust tooling to automatically extract type signatures
(TYPETRACER) and instrument R functions with checks based on their declared types
(CONTRACTR).

− We carried out a program analysis of 412 widely used and maintained packages to
synthesize type signatures for 25,215 functions and validated the robustness of these
signatures against 160,379 programs that use those functions.

− We report on the appropriateness and usefulness of a simple type language for R.
Overall, we found our design to fit quite well with the existing language: (1) Nearly

7cf. https://github.com/PRL-PRG/genthat
8The largest venue for users of the R language.
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1. INTRODUCTION

80% of functions are either monomorphic or have only one single polymorphic argu-
ment. (2) When we tested the types inferred by TYPETRACER during our evaluation,
we found that less than 2% of contract assertions failed. (3) Furthermore, we found
that our type language and contract checking framework would help programmers
eliminate or otherwise simplify 61% of existing type checks and assertions in user
code. In summary, we believe that our simple type language design is a solid foun-
dation for the eventual type system for R.

The paper was submitted with an artifact [Turcotte et al., 2020a] which got the ACM
evaluated artifact—reusable badge and the complete data set was made publicly avail-
able [Turcotte et al., 2020b].

1.2.3 Scala Implicits are Everywhere: A Large-scale Study of the Use of Scala

Implicits in the Wild

By Filip Křikava, Heather Miller and Jan Vitek published in Proceedings of the ACM Program-
ming Languages 3, OOPSLA, Article 163, October 2019 [Křikava et al., 2019].

In this paper, we report on a large-scale study of the use of the Scala implicit parameters
and implicit conversions in the wild. They represent a distinctive language feature that
provides a way to reduce the boilerplate code and implement certain language features
outside of the compiler. While powerful, they have some flaws (misuse, complexity,
and compilation time overhead). This study is both a retrospective on the result of in-
troducing this feature into the wild and a means to inform designers of future language
of how people use and misuse implicits. It makes the following contribution:

− We implemented scalable data analysis pipeline for running static data analysis tools
over Scala semantic data.

− We have assembled a large corpus of 7,280 Scala open-source projects hosted on
GitHub with 18,713,247 lines of code. At the time of writing, it has been the largest
corpus of compiled Scala projects to the best of our knowledge.

− We built a static analyzer that extracts implicit declarations and calls sites from se-
mantic data into a model that can be queried.

− We provide the results of the analysis: 98.2% of projects have at least one implicit call
(1) Scala implicits are everywhere as site, and 5,694 contain at least one implicit defini-
tion. Across the projects, median of the implicit call sites’ ratio is 23.4%—i.e., one out
of every four calls sites involves implicits. (2) Most projects do not misuse the implicits.
We quantify the use of six common patterns and two anti-patterns. (3) Most implicit
call sites take between 0-2 implicit parameters. However, this gets much higher in
the libraries that rely on implicit type-class derivation. (4) Finally, we observe slower
compilation times for projects that use implicit type-class derivation.

The paper was submitted with an artifact [Krikava et al., 2019] which got the ACM
evaluated artifact—reusable badge.

6



1.3. Thesis Outline

1.3 Thesis Outline

We organize the rest of this thesis as follows: Chapter 2 starts with a background on the
R programming language, presents the tools that we have built for analyzing R code,
discusses our approach to building program analysis pipelines, and finally, overview
work on program analysis related to this thesis. We focus primarily on R because in
Scala’s case, we could build on the existing tools, and unlike R, Scala comes from a
programming language research laboratory and thus is more known to our community.
Next, in Chapter 3, we present the contribution of the three papers included in this
thesis about automated unit test extraction for R packages in Section 3.1, empirically
designing a type language for R in Section 3.2, and studying the use of implicit in the
Scala programming language in Section 3.3. We conclude this thesis and outline further
research in Chapter 4. We enclose the individual published papers in Appendix A.

7





CHAPTER 2
Background

In this chapter we start with a short primer on the relevant characteristics of the R pro-
gramming language needed for the two R program analysis (cf. Sections 3.1 and 3.2).
Next, we describe the tooling and the necessary infrastructure that we have developed
for analyzing R, point out why analyzing R is hard and we discuss our approach to
building program analysis pipelines. Finally, we discuss related work.

2.1 The R Programming Language

R is the language for statistics and data science. It was designed in 1993 by statisti-
cians Ross Ihaka and Robert Gentleman [Ihaka and Gentleman, 1996] as an alternative
implementation to the S programming language [Becker et al., 1988] created by John
Chambers in the 1970’ at Bell Labs. At the language level, the main change was the intro-
duction of lexical scoping semantics inspired by Scheme and a garbage collector. At the
community level, the breaking change was the release of the language under the open-
source GNU public license in 1995. Over the years, R was designed, implemented, and
maintained by statisticians. In the beginning, it was developed as a glue languages for
statistical routines written in Fortran. Today, R is one of the key tools for sophisticated
data analysis in wide range of fields. It is oriented towards data scientists—i.e., non-
programmers with a focus on rapid prototyping and interactive use. The R-consortium
estimates about 2M of R users worldwide1. Industrial use is large in companies ranging
from Google, which has developed its own style guide2, to Microsoft, who provides its
own R distribution based on GNU R3.

2.1.1 The language

R is a surprisingly rich language with a rather unusual mixture of features: it is vector-
ized, dynamically typed, lazy functional language with limited side-effects, extensive

1cf. https://www.r-consortium.org/about
2cf. https://google.github.io/styleguide/Rguide.html
3cf. https://mran.microsoft.com/open
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2. BACKGROUND

reflective facilities with first-class environments, and retrofitted multiple object-oriented
programming support [Morandat et al., 2012]. That makes it a challenging target for
program analysis:

− R does not have type annotations or a static type system. This means there is nothing
to suggest what the expected arguments or return values of a function could be, and
thus there is little to guide test generation.

− Symbols such as + and ( can be redefined during execution. This means that every
operation performed in a program depends on the state of the system, and no func-
tion call has a fixed semantics. This holds even for control flow operations such as
loops and conditionals. While redefinitions are not frequent, they do occur, and tools
must handle them.

− R does not distinguish between scalars and vectors (they are all vectors). A vec-
tor can hold either logical, integer, double, complex, character values or raw bytes.
There is no intrinsic notion of subtyping in R, but in many contexts built-in types are
automatically and silently coerced from more specific types to more general types
when deemed appropriate. Some odd conversions occur in corner cases, such as
1<"2" holds and c(1,2)[1.6] returns the first element of the vector. All vectorized
data types are monomorphic, except list which can hold values of any type. For all
monomorphic data types, attempting to store a differently-typed value will cause a
conversion: either the value is converted to the type of the vector, or vice versa.

− R is fully reflective. It is possible to inspect any part of a computation (e.g., the code,
the stack, or the heap) programmatically. Moreover almost all aspects of the state of
a computation can be modified (e.g., variables can be deleted from an environment
and injected in another).

− All expressions are evaluated by-need. For example, the call f(a+b) contains three
delayed sub-expressions, one for each variable and one for the call to plus. This
means that R does not pass values to functions but rather passes unevaluated promises
(the order of evaluation of promises is part of the semantics as they can have side ef-
fects). These promises can also be turned back into code by reflection.

− Most values are vectors or lists. Values can be annotated by key-value pairs. These
annotations, coupled with reflection, are the basic building blocks for many ad-
vanced features of R. An example of this are the four different object systems that
use annotations to express classes and other attributes.

− R has a copy-on-write semantics for shared values. A value is shared if it is accessible
from more than one variable. This means that side effects that change shared values
are rare. This gives a functional flavor to large parts of R.

− There are multiple object-oriented systems: S3, S4, R5 (also called RC), and R6. The
S3 object system supports single dispatch on the class of the first argument of a func-
tion, whereas the S4 object system allows multiple dispatch. R5 allows users to define
objects in a more imperative style. R6 is a rewrite of R5 with more OOP features such
as support for private and public fields and methods. Additionally, some packages,

10



2.1. The R Programming Language

for example, ggplot24 implements their own object-oriented system.

2.1.2 R Code Repositories

There are multiple large open-source code repositories for R. (1) The Comprehensive R
Archive Network (CRAN)5, which is the primary and largest repository of R code, hosts
almost 16K packages and keeps growing with about six new package submissions a
day [Ligges, 2017]. (2) The Bioconductor project6, which provides tools for the analysis
and comprehension of high-throughput genomic data, contains close to 2K R packages.
(3) The Kaggle data science competition website7 contains over 7.9K unique solutions in
R to over 200 data analytic competitions. (4) Finally, GitHub reports more than 231K R
projects.

Unlike sites like Kaggle and GitHub, where anyone can submit any code, both Bio-
conductor and CRAN are curated repositories. Each program deposited in the archive
must come with documentation and abide by a number of well-formedness rules that
are automatically checked asserting certain quality8. Most relevant for this work is that
all of the runnable code is tested and only a successfully running package is admitted
in the archive. There are three sources of runnable code that come with each CRAN
package: tests, examples and vignettes. They are, respectively, traditional unit tests, code
snippets from the documentation, and long-form use-cases written in Latex or Rmark-
down with executable snippets of R code.

In the studies presented in this thesis, we work with both CRAN and Kaggle. The
intent here is to contrast code written by experienced R developers (CRAN) with code
authored by typical end-users of the language (Kaggle). There are 4.6M lines of runnable
code that can be extracted from the CRAN packages’ examples, tests and vignettes, and
665.8K lines of runnable code in Kaggle programs.

2.1.3 Analyzing R code

The highly dynamic nature of R enable programming idioms that make it nearly impos-
sible to derive reliable insights statically. On the other hand, given that there exists a
large number of runnable R code makes the language well-suited for dynamic analysis.
However, there was no support for dynamic tracing functionality in R other than the
coarse-grained built-in trace function, which traces only the R closures’ entry and exit
points. To this end, we have built two reusable tools: R-DYNTRACE for the low-level
tracing of R programs and RUNR, an R package containing a collection of utilities for
building data-intensive dynamic analyses.

4Popular plotting library cf. https://ggplot2.tidyverse.org/
5cf. https://cran.r-project.org/web/packages/index.html
6https://www.bioconductor.org/packages
7cf. https://kaggle.com
8Moreover, all the executable artifacts from all CRAN packages are checked for each new release of the

language. The core R developers actively reach out to package maintainers when they find compatibility
issues.
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R-dyntrace. The R-DYNTRACE project initially started as an extension to GNU R vir-
tual machine with a set of dtrace-compatible9 probes triggering on specific program
execution events (e.g., function entry and exit, promise creation and execution, eval en-
try and exit). Eventually10, we dropped the dtrace compatibility and introduced a C
API so an analysis could be written as an R package. Later, Aviral Goel made it com-
patible with R 3.5 and 4.0, and significantly extended its capabilities adding support for
garbage collection events, S3/S4 dispatch, variable definition and mutation, and long-
jumps used by the interpreter to implement non-local exit. The tool was presented at the
R Implementation, Optimization and Tooling workshop (associated with UseR! conference)
in 2019 [Goel et al., 2019]. So far, it has been used for two large program analyses: the
study of lazyness [Goel and Vitek, 2019] and for R type system design [Turcotte et al.,
2020c] presented in Section 3.2.

Actual dynamic analysis is written as a standalone R package. The package con-
tains code that defines tracer state and registers callbacks for the relevant events. R-
DYNTRACE API exports utilities to access the interpreter state, such as the evaluation
order of built-in function arguments and variable lookup without triggering any reg-
istered callbacks. Furthermore, R-DYNTRACE can detect nesting in callbacks, resulting
from the tracing algorithm inadvertently executing R code that potentially modifies the
program state. This is a common stumbling block in naïve tracing attempts, and our
design captures these cases.

The main drawback of R-DYNTRACE is that despite being a small extension to the
GNU R virtual machine (currently it is 2K lines of C code), it is still an extension that
needs to be updated with every new R version. R is not a small project. The latest 4.0
release spans over 300K lines of C, 100K lines of Fortran, and 270K lines of R code. That
makes it tricky to ensure the probes are in all the right places. There is an outgoing
discussion with the core R team about integrating R-DYNTRACE into GNU R under a
compilation flag. However, precisely because of the maintenance issue, there has been a
little move forward towards this goal. This is also one of the reason why the GENTHAT

tool (cf. Section 1.2.1) was not implemented on the top of R-DYNTRACE. We want the
tool to be used by ordinary R package developers without any extra dependency on a
modified R virtual machine. Also, in this case, it was possible to implement the tracing
without the need of a low-level interpreter state.

Runr. The package facilitates constructing multistage pipeline for analysis of tracing
data using the map-reduce programming model. It contains utilities for solving the re-
curring tasks such as metadata and runnable code extraction, computing code coverage
including reverse-code coverage, and running R code in isolation, simulating the CRAN
checking environment as close as possible.

9A performance analysis and troubleshooting tool for Solaris, OSX and FreeBSD http://dtrace.org/
blogs/about/. The reason why we have stated with dtrace was the ability to trace all the way to system
calls in one framework.

10When we realized that there is no reliable dtrace implementation for Linux.
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Challenges. Even with the above tools, dynamic tracing of R code is hard. The details
and their proverbial devil are surprisingly tricky to get right at scale:

− R is a lazy language. Even a simple lookup forcing a promise might fire a large
cascade of events. This makes it hard to relate low-level traced data to high-level
insights.

− R implementation is intertwined between C and R making it difficult to properly sep-
arate events triggered by user code from the ones coming from language internals.

− R has evolved organically over the last three decades. Without clear specs, it has
not always been clear the separation between public and private interface making
it difficult to deprecate APIs. A good example is the functions that manipulate R
environments. At the C level, there are over 300 such functions. At the R level, the
envir parameter which identifies an environment to be manipulated can be a list,
a positive integer, a negative integer, a string, an actual environment, or any other
object for which there exists an implementation as.environment S3 method. This
poses a significant cognitive overhead.

− Often, we want to summarize events happening on R objects for which we use model
objects. The problem is that R simply allocates too many objects. This is because we
are running real programs that often deal with large data. Therefore, we have to
setup proper hooks in the garbage collector to deallocate appropriately and make
sure we do not count anything twice.

− Cross-language boundaries can also be tricky. R packages contain a significant por-
tion of native code, which can call back to R. Without care it might result in recursive
hook invocation.

− Running a large amount of real-world code means that we often run into unexpected
corner cases. These are mostly engineering issues but can quickly leave us deep in a
rabbit hole.

2.2 Program Analysis Pipelines

In this section we describe our approach to building data analysis pipelines.

Corpus selection. Analyzing large codebases brings challenges. Seemingly simple
things such as code selection suddenly become much more demanding. How do we
select the representative code and make sure there is no duplication and bias? For ex-
ample that most programs do not come from student projects. In the case of a hundred
projects, it is easy, but it is much harder in the case of hundred thousand projects.

Regarding GitHub, Kalliamvakou et al. [2014] suggests a simple rule of thumb:
at least three contributors. While this helps to filter out some personal or irrelevant
projects, in our Scala implicit study (cf. Section 3.3) we found that the corpus contains a
considerable code duplication. The problem is that even without forks, the corpus con-
tained “unofficial” forks—i.e., copies of source code with no metadata suggesting their

13



2. BACKGROUND

origin. To illustrate the severity, the corpus contained 102 copies of Apache Spark11.
Since Spark is the largest Scala project (over 100K lines of code), keeping them would
significantly skew the subsequent analysis as 37.6% of the entire data set would be iden-
tical. We used DÉJÀVU [Lopes et al., 2017] to help us identify file-level duplicates. But
still, we spent a considerable effort to clean the corpus. In the end, we have excluded
over half of the downloaded source code but lost fewer than 2.8% of GitHub stars. While
the number of GitHub stars does not necessarily reflect project’s quality, originals tend
to have higher star counts than copies. Similarly, active projects usually have more
stargazers than student projects. Deduplication is equally important when working
with Kaggle where we found that 2.3K out of 10K were whole-file duplicates.

Pipeline. From our experience, extracting insights from code is an iterative process.
We update the analysis as we learn from the data. The problem is that running it on
a large code data set can take days and produce a vast amount of data. Therefore, the
pipeline has to be robust to handle the load yet flexible to allow for the exploratory
nature of these studies.

We use a simple approach to implement the analysis pipelines. The focus is on au-
tomation and flexibility. Any task should be possible to run in an isolation on a small
input. We often run into something unexpected in the corpus code and it helps a lot to
be able to manually debug it without much setup overhead. To orchestrate the pipeline
execution, we use GNU make. Each task is usually implemented either in R or bash.
Tasks are run in parallel using GNU parallel [Tange et al., 2011]. The advantage of GNU
parallel is that (1) it is simple to use, (2) it can run on one host or on multiple servers
requiring only a password-less SSH setup,12 and (3) it provides a comprehensive CSV
file with the individual jobs’ results. The RUNR package contains support for reading
these results, allowing us can quickly figure out what went wrong. Since we execute real
code from unknown sources, we use docker containers for sandboxing, protecting the
execution environment from malicious or broken code. Another advantage of docker
is that it facilitates the preparation of an artifact submission. Finally, for the actual data
analysis, we use Rmarkdown.

2.3 Program Analysis

Program analysis helps us to answer questions about program behavior. In the case
of static analysis, by looking at the program text. In the case of dynamic analysis, by
actually running the program in a concrete execution environment and with a concrete
input. This thesis relies on program analysis to get insights about language use in real-
world code. In the case of R, we use dynamic analysis. In the case of Scala, we use static
analysis. The domain of program analysis is relatively large. In this section, we discuss
some work related to the studies included in this thesis.

11A popular analytics engine for big data processing, cf. https://spark.apache.org/
12With SSH connection sharing, there is very little overhead with spawning new remote jobs.

14

https://spark.apache.org/


2.3. Program Analysis

2.3.1 Automating Test Extraction

The literature can be split into work based on static techniques, dynamic techniques and
a combination of both.

Static techniques use the program text as a starting point for driving test genera-
tion [Boyapati et al., 2002; Sen et al., 2005; Ernst et al., 2011]. The difficulty we face
with R is its extreme dynamism (cf. Section 2.1). One approach that would be worth
exploring, given that sound static analysis for R appears to be a non-starter, is some
combination of static analysis and machine learning. For instance, MSeqGen uses data
obtained by mining large code bases to drive test generation [Thummalapenta et al.,
2009]. So far we have not gone down that road.

Dynamic approaches for generating unit tests often rely on some form of record
and replay. Record and replay has been used to generate reproducible benchmarks
from real-world workloads [Richards et al., 2011a], and, for example, capture objects
that can be used as inputs of tests [Jaygarl et al., 2010]. Joshi and Orso describe the
issues of capturing state for Java programs [Joshi and Orso, 2007]. Test carving [Elbaum
et al., 2006] and factoring [Saff et al., 2005] have very similar goals to ours, namely
to extract focused unit tests from larger system tests. These works mostly focus on
capturing and mocking up a sufficiently large part of an object graph so that a test can
be replayed. Rooney used similar approach to extract tests during an actual use of an
application through instrumentation [Rooney, 2015]. While R has objects, their use is
somewhat limited, they are typically self-contained, and capturing them in their entirety
has worked well enough for now.

2.3.2 Type System Design

Dynamic programming languages such as Racket, JavaScript, PHP and Lua have been
extended post factum with static type systems. In each case, the type system was care-
fully engineered to match the salient characteristics of its host language and to foster a
particular programming style.

But what if the design of the type system is unclear? Andreasen et al. [2016] propose
a promising approach called trace typing. With trace typing, a new type system can be
prototyped and evaluated by applying the type rule to execution traces of programs.
While the approach has the limitation of dynamic analysis techniques, namely that the
results are only as good at the coverage of the source code, it allows one to quickly
test new design and quantify how much of a code base can be type-checked. Other
approaches that infer types for dynamic analysis include the work of Furr et al. [2009]
and An et al. [2011] for Ruby.

2.3.3 Analyzing Scala Codebases

There have been efforts to study how Scala is used by practitioners. Tasharofi et al.
[2013] looked at how often and why Scala developers mix the actor model with other
models of concurrency. They analyzed 16 GitHub projects at the compiled byte-code
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level with a custom tool. The choice of byte-code had some drawbacks. For exam-
ple, their analysis could not detect indirect method invocations and thus they had to
supplemented it with manual inspection. The same corpus is used by Koster [2015] to
analyze different synchronization mechanisms used in Scala code. Despite using the
same projects, he analyzed 80% more lines of code as the projects were updated to their
latest commit. The increase was mostly due to Spark that grew from 12K to 104K lines
of code in th two years that separated the studies. Unlike the previous study, they opted
for source code analysis based on string matching. De Bleser et al. [2019] analyzed the
tests of 164 Scala projects (1.7M lines of code) for a diffusion of test smells. They used a
similar way of assembling a corpus relied on semantic data from the SCALAMETA. Vil-
lazón et al. [2019] build a language-agnostic dynamic analysis framework to to identify,
among others, Java and Scala task-parallel workloads suitable for inclusion in a domain-
specific benchmark suite. They analyze of 4K projects. We shall yet to evaluate if the
presented framework could be used for our needs.
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CHAPTER 3
Contribution

In this chapter we present the individual contribution from each of the enclosed publi-
cation. We extend the contribution summary from Section 1.2 with a context and mo-
tivation to introduce the problem, and description of the methodology used for the ex-
periments including the design of the data analysis pipeline and corpus assembly. Each
presentation is thus divided into three parts: (1) context and motivation, (2) methodol-
ogy, and (3) results with key findings. We start with the work done in the context of R,
followed by the study of implicits in Scala.

3.1 Unit Test Extraction

In this section we present an experiment with an automated test extraction from execu-
tion traces of client code in the R programming language. The work appeared in Tests
from Traces: Automated Unit Test Extraction for R by Filip Křikava and Jan Vitek, published
in Proceedings of the 27th ACM International Symposium on Software Testing and Analysis
(ISSTA), August 2018 [Křikava and Vitek, 2018a].

3.1.1 Context and motivation

This paper explores a relatively simple idea: Can we effectively and efficiently extract
test cases from program execution traces? Our motivation is that if programmers do not
write comprehensive unit test suites, then it may be possible for a tool to extract those
for them, especially when the software to test is widely used in other projects. Our
approach is as follows: (1) For each project and its reverse dependencies, gather all
runnable artifacts, be they test cases or examples, that may exercise the target. (2) Run
the artifacts in an environment where all project functions are instrumented and records
execution traces. (3) From those traces, produce unit tests and, if possible, minimize
them, keeping only the ones that increase code coverage.

We aim to answer the key question: how well can automated trace-based unit test extrac-
tion actually work in practice? The metrics of interest are related to the resulting coverage
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of the target project and the costs of the whole process. Our goal is to extract black-
box unit tests for software packages from a large body of client code. The benefit we
are aiming for is to reduce the manual effort involved in constructing such regression
testing suites and not necessarily finding new bugs. We try to answer this question in
the scope of the R programming language. R is an interesting target because the CRAN
packages, which are central to its ecosystem, have relatively low code coverage (on av-
erage 19%). However, at the same time, they are equipped with runnable code in the
form of examples and vignettes that exercise their functionality.

3.1.2 Methodology

In the paper we report on implementation and empirical evaluation of GENTHAT, a tool
that we have built for automated extraction of unit tests from R execution traces. First,
we present the workings of the tool, followed by the design of the experiment that we
used to evaluate it.

Genthat. An execution trace is a tuple 〈 f , v1, . . . , vn, v, S〉 recorded for each function
call during the execution of a program, where f is a function identifier, vi are values of
the arguments, v is the return value, and S is the the current random number generator’s
seed. The seed is necessary for reproducing calls that involve random values.1

To automatically extract unit tests from execution traces, we essentially need to do
four things:
1. Extract executable code from installed packages and turn them into R scripts. Each

script is a self-contained runnable file.
2. Instrument functions in the target package to record execution traces run each ex-

tracted script.
3. Generate unit tests from the recorded traces. Concretely, we use testthat format2

format as this is by far, the most popular unit testing framework in R.
4. Check the generated unit tests and discard any invalid and incorrect test. Invalid tests

are those that fail to execute. Incorrect tests are those that do not yield the expected
result. Optionally, we minimize the test suite. Minimization uses simple heuristics
to discard tests that do not increase code coverage. Coverage being equal, tests that
are, textually, smaller are preferred.

While seemingly simple, it takes a surprising amount of time to get right. There several
engineering issues that are connected to the features of R, as mentioned in Section 2.1.
We discuss them in detail in Section 3 of the paper (cf. Appendix A.1). Here we summa-
rize the two main difficulties regarding execution tracing and unit test generation.

In a simpler language, all we would need to do is to capture function arguments,
return values, and any global state the function may access on rely on. Not so in R.
Lazy evaluation complicates matters as arguments are passed by promises. A promise is

1Being a language for statisticians, random number generators are omnipresent.
2cf. https://testthat.r-lib.org/
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3.1. Unit Test Extraction
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Figure 3.1: Overview of the pipeline. GENTHAT extracts scripts, traces their execution, and gen-
erates unit tests. Unit tests are checked for correctness and validity, and finally tests are mini-
mized. The experiments were carried out on two virtual nodes (each 60GB of RAM, 16 CPU at
2.2GHz and 1TB virtual drive)

a closure that is evaluated at most once to yield a result. Thus, at function call, one can-
not directly record values as they are not yet evaluated. Doing so would force promises
that might not be evaluated in the current frame. It may also alter the behavior of the
program since promises can have side effects. Moreover, R’s reflective capabilities dic-
tate that the generated expression must be as close to the original call as possible. Any
syntactic change may be observable by user code. The generated test thus attempts to
retain the structure of the client source code as much as possible.

To generate unit tests out of the recorded trace, we need to write out arbitrary R
values into a source code file. The deparse function turns some values into a character
string. Unfortunately, it handles only a subset of the 25 different R data types. Since any
of those data types can show up as an argument to a function call, we had to implement
own deparsing mechanism to support them all. In general, we strive to output textual
forms of arguments because they can be inspected and modified by developers. Never-
theless, there are values for which it is either impractical (e.g., large vectors or matrices)
or not possible to turn them back into source code. For those, we fallback to built-in
binary serialization.

Pipeline. Figure 3.1 presents an overview of the pipeline used for the experiment. We
start by installing all of the selected CRAN packages and extracting metadata, including
test code coverage. Next, we run GENTHAT. Finally, we rerun the extracted tests. We
do two runs, one to measure how much time it takes to run and second in which we
measure code coverage.

Test extraction can fail. In the paper, we provide a detailed analysis of the reasons (cf.
4.4 in Section 3.1), but at a high-level, the failures can occur during: (1) tracing because
the instrumentation perturbs the behavior of the program, (2) generation because some
value could not be serialized, (3) validation because deserialization fails, or (4) correct-
ness checking because the test was non-deterministic or relied on an external state that
was not captured.
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Corpus. For these experiments, we selected 1,700 packages from CRAN. We picked
the 100 most downloaded packages from RStudio CRAN mirror3, including their de-
pendencies, and then 1000 randomly selected CRAN packages, again including their
dependencies. This added up to some 1,726 packages. The motivation for this choice is
to have some well established and popular packages along with a representative sample
of CRAN. From the 1.7K packages, some 1,524 ran successfully. The remaining failed
either because of a timeout (5 hours during tracing), a runtime error, or failure to com-
pute code coverage. The packages amounted to 1.7M lines of R code. There were 158K
lines of examples, 32K lines of code extracted from vignettes, and 163K lines of code in
tests.

3.1.3 Results

A detailed discussion about the results is provided in Section 4 of the paper (cf. Ap-
pendix A.1). Here we provide a summary of GENTHAT evaluation. We were primarily
interested in finding out (1) how much we can improve test coverage by extracting tests
from documentation and reverse dependencies, (2) how efficient such extraction can be,
and (3) what proportions of the functions calls can be turned into test cases and how
large the resulting test suites would become.

Coverage. Figure 3.2 compares the code coverage obtained from the existing package
tests and the coverage obtained from GENTHAT generated unit tests. For many pack-
ages, the provided tests give relatively low coverage. GENTHAT is able to increase the
coverage from an average of 19% to 53% per package. This is a significant improvement.
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Figure 3.2: Code coverage from package tests and GENTHAT extracted unit tests. Each bar shows
the ratio of packages that have at least that code coverage.

3Used data for June 2017 from http://cran-logs.rstudio.com.
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Performance. Tracing clearly has a significant overhead. The overall runtime is almost
two days on a two-node virtual cluster. Per package, the median time is 60 seconds.
Given that test generation is a design-time activity, this is likely acceptable. The main
portion of the time is spent in running the generated tests, which are numerous. On
average, each package yields 1,000 tests. They all have to be run to determine validity
and correctness, as well as test minimization to determine whether they increase code
coverage. On the other hand, testing with the minimized tests run fast. We can process
all the packages in 19 minutes. Thanks to test minimization, this is 1.9 times faster than
the time it would take to run all of the original examples, tests, and vignettes.

Accuracy. Running the executable code extracted from the 1.5K corpus packages re-
sulted in 5.3M execution traces. Out of them, only 1.6M unique calls—i.e., calls with
distinct arguments and return values. 93% of these traces were turned into using tests.
86% of the generated tests were valid and correct. From the total of 1.3M correct tests,
97.9% were redundant—i.e., not increasing code coverage and therefore discarded. Fi-
nally, some 26,838 tests were retained.

3.2 Towards a Type System for R

In this section we present the experiment with a design of a type system for the R pro-
gramming language. The work appeared in Designing Types for R, Empirically by Alexi
Turcotte, Aviral Goel, Filip Křikava and Jan Vitek published in Proceedings of the ACM Pro-
gramming Languages 4, OOPSLA, Article 181, November 2020 [Turcotte et al., 2020c].

3.2.1 Context and motivation

Many of the design decisions that gave us R were intended to foster an interactive and
exploratory programming style. These include to name a few salient ones, the lack
of type annotations, the ability to use syntactic shortcuts, and widespread conversion
between data types. While these choices have decreased the barrier to entry—many
data science educational programs do not teach R itself but simply introduce some of its
essential libraries—they also allow for errors to go undetected.

Retrofitting a type system to the R language would increase our assurance in the
result of data analysis, but this requires facing two challenges. First, it is unclear what
would be the right type system for a language as baroque as R. Second, but just as
crucially, designing a type system that will be adopted would require overcoming some
prejudices and educating large numbers of users.

The goal of this paper is to gather data that can be used as input to the process of
designing a type system for R. The long-term goal is to retrofit a type system into R. In
this work we start by looking at function signatures.
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3.2.2 Methodology

We attempt to address ascribing function signatures using an iterative process: First, we
design a simple type language that matches the R data types. Next, we record function
invocations for a corpus of widely used libraries. We do this by executing the runnable
code extracted from these packages. As a next step, we use the traces to infer function
signatures. These signatures are then turned into contracts injected into the correspond-
ing functions and checked whether they well describe the function arguments and re-
turn values. We check this by running code from reverse dependencies as well as code
from Kaggle. Finally, we use the feedback to improve the type language design. This al-
lows us to see how far one can get with a simple type language and identify our design
limitations.

Pipeline. To support this process, we have built tooling to automate the extraction of
raw type signatures from execution traces, infer type signatures from a set of raw types,
and validate the inferred signatures by means of contracts. These tools are used in an
automated pipeline (cf. Figure 3.3). It includes the following steps:

1. Download and install all available CRAN packages.
2. Extract package metadata including code coverage and reverse code coverage—i.e.,

the code coverage obtained from running code from dependent packages.
3. Running dynamic analysis to trace function invocation and record information of

types of function arguments and return values.
4. Infer function type signatures from gathered type information.
5. Validate inferred signatures by running code from reverse dependencies.

Create CRAN
mirror

Extract package
metadata 
- code size

- code coverage
- reverse dependencies

code coverage

Extract 
raw type traces

Infer 
function type

signatures
Validate inferred

signatures

Packages:

Code size:

1hDuration: 2d1 10h 5h 5h

15K

31.6M

412

1.3M

412

running: 385K

412 running: 8,694

running: 19.6M

Size: package: 8 GB packages: 1 GB traces: 604 GB types: 5MB N/A

N/A

Figure 3.3: The Analysis Pipeline; 1 metadata has to be extracted for all CRAN packages. The
experiments were carried on single node Intel Xeon 6140, 2.30GHz with 72 cores and 256GB of
RAM.

Corpus. We have selected 412 CRAN packages consisting of 760.6K lines of R code and
534.4K lines of native code. We used two criteria for including a package into the corpus:
(1) the package must have runnable code that covers a significant part of the package
source code from which type signatures could be inferred, and (2) the package must
have some reverse dependencies that will allow us to evaluate the inferred types, using
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the runnable code from these dependencies. The concrete thresholds used were: at least
65% of expression coverage and at minimum 5 reverse dependencies. The 412 selected
packages contain 385.8K lines of runnable code. There are 18.8K reverse dependencies
with 11.2M runnable lines of code resulting in 45.9% coverage (on average) of the corpus
packages. To represent end-user code in the corpus, we turned to Kaggle using 792
kernels with 33.7K lines of R code.

Type language. Figure 3.4 resents the type language. Given the language’s peculiar-
ities (cf. Section 2.1), several design choices had to be reviewed and evaluated. Here
we highlight the essentials. We include types that cover all primitive vectors, environ-
ments, lists, and the distinguished null types, inhabited by the single NULL value. To
capture common uses of NULL̨, the type language has a nullable type, written ? T and
representing either values of type T or NULL̨. We also add basic support for classes—
i.e., any non-null R value with a class attribute. Despite that R does not have scalars,
there are cases where functions expect scalar values, so we add a distinction between
vectors (e.g., int []̨) and scalars (e.g., int). Each primitive type has its specific NA. Many
built-in functions, especially those implemented in C or Fortran, do not support NA val-
ues. It is thus advantageous to distinguish between vectors that can and cannot contain
missing values. Finally, We support untagged unions of types written T1 |˛... |˛Tn and
functions signatures the form 〈A1, . . . , An〉 → T where each Ai argument is either a type
T or dots (...), a variable-length argument list. A single function’s signature can be the
disjunction of a number of individual signatures. Overall, the choice of type language
follows the structure of values. The presence of NA-free data types and scalars are two
choices that must be validated in practice.

T ::= any top type
| null null type
| env environment type
| S scalar type
| V vector type
| T |̨T union type
| ?̨ T nullable type
| 〈A1, . . . An〉 → T function type
| list〈T〉 list type
| class〈ID1, . . . IDn〉 class type

A ::= T arguments
| ... dots

V ::= S []̨ vector types
| ^̨S []̨ na vector types

S ::= int integer
| chr character
| dbl double
| lgl logical
| clx complex
| raw raw

Figure 3.4: The R type language

R does not support the notion of subtyping between values, but we include a few
simple rules to capture widespread coercion, including the new rules created by our
type language (cf. Figure 3.5).

Type tracing and type inference. We use dynamic analysis for extracting raw type
traces. Similar to execution traces in GENTHAT, a type trace is a tuple 〈 f , t1, . . . , tn, t〉 for
each function call during the execution of a program, where f is a function identifier, ti
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S []̨ <: ^̨S []̨
T <: ?̨T

list〈T〉 <: list〈T′〉 iff T <: T’
S <: S []̨

lgl <: int
int <: dbl
dbl <: clx

Figure 3.5: Subtyping rules

T |˛ T ⇒ T
T |˛ T′ ⇒ T iff T′ <: T

list〈T〉 |˛ list〈T′〉 ⇒ list〈T〉 iff T′ <: T
null |˛S1[]̨ |˛ . . . Sn[]̨ ⇒ ^̨S1[]̨ |˛ . . . ^̨Sn[]̨

Figure 3.6: Simplification rules

are types of the arguments and t is a type of the return value. Similarly to GENTHAT,
extra care has to be done for promises. To deal with unevaluated arguments, we make
an initial guess for each argument at function entry and update the recorded type if the
promise is forced.

These traces will be combined into an overall arrow type for the function, and in
order to keep these signatures compact, we unify the traces into a single top-level arrow
with unions at each argument position. Thus, the shape of function signatures will be:

〈T1,1 |˛T1,i, . . . , Tn,1 |˛Tn,j〉 → T1 |˛... |˛Tk

In other words, we take the union of the types occurring at individual argument posi-
tions rather than a union of function types. Furthermore, we apply some transformation
on the types to keep the size of types in check (cf. Figure 3.6).

Checking type signatures One can validate a function’s type signature by checking
that it is respected in all programs that call the function. For this, we developed CON-
TRACTR, an R package that decorates functions with assertions. We use it to insert the
type checking code around functions.

The injected contracts check arguments with a simple tag check when possible. Some
properties require traversing data structures, such as the absence of NA. For union types,
multiple checks may be needed, at worst one per member of the union. To retain the
non-strict semantics of R, the expression held in a promise is wrapped in a call to the
type checker, and type checking is delayed until the promise is forced. This leads to
corner cases such that the type checking of a function may happen after that function
has returned.

3.2.3 Results

A detailed discussion about the results is provided in Section 6 of the paper (cf. Ap-
pendix A.2). Here we provide a summary of the evaluation. We were primarily inter-
ested in finding out (1) how expressive the type language is, (2) how robust it is, and
(3) how useful the inferred signatures are. Figure 3.7 gives an example of how the in-
ferred signatures look like.

Expressiveness. The first part of our evaluation attempts to shed light on how good
a fit our proposed type language is with respect to common programming patterns oc-
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Figure 3.7: Selected type signatures

curring in widely used R libraries.

− Nearly 80% of functions are either monomorphic or have only one single polymor-
phic argument. Monomorphic in this context means that the type is not relying on
any or including a union.

− Most functions do not require a union at all (83.1% of arguments do not have a
union), and only 2.5% of positions have unions with more than three members.

− The data supports making the presence of NAs explicit. Only 2923 (or 2.78%) of argu-
ments are marked as possibly having NAs. Thus the overwhelming majority of types
appear to be NA-free.

− The data also suggests that programmers often use scalars and do dimensionality
checks on their data. In our data 25,064 (or 33.33%) of the arguments are scalar types.
While not completely surprising, this is a rather large number.

− The number of argument which may be NULL is 5057 (or 4.44%). This is a relatively
small number of occurrences, but it is worth expressing the potential for the presence
of NULL as these would likely inhibit optimizations.

− There are just 1,705 argument positions (1.5%) that take higher-order functions. Given
the small number of occurrences, it is not worth complicating the inferred types with
a complete signature for these functions.

3.2.4 Robustness

To measure the inferred types’ robustness, we check the signature contracts by running
the extracted code from the reverse dependencies of the corpus’s packages. In total,
we ran extracted code from 8.6K unique packages and recorded 98M total assertions.
Overall, we found that only less than 2% of contract assertions failed. Overall, these
numbers are promising and suggest that the type signatures are indeed robust.

Usefulness. One way to assess our type checking framework’s usefulness is to see
how many existing user-defined type checks can be replaced by CONTRACTR. To mea-
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sure this, we extracted all calls to stopifnot4 and assertthat5 assertions, and checked
which could be either simplified or be completely replaced by CONTRACTR.

Out of the 412 packages, 153 use runtime assertions. Altogether, there are 1,995
assertions in 1,264 functions. Among these, CONTRACTR can replace 1,005 (50.4%) as-
sertion calls across 114 packages, and 688 functions. Furthermore, an additional 218
asserts in 125 packages and 859 functions could have been simplified.

3.3 Study of Implicits in Scala

In this section we present the study of implicits in the Scala programming language.
This work appeared in Scala Implicits are Everywhere: A Large-scale Study of the Use of Scala
Implicits in the Wild by Filip Křikava, Heather Miller and Jan Vitek published in Proceedings
of the ACM Programming Languages 3, OOPSLA, Article 163, October 2019 [Křikava et al.,
2019].

3.3.1 Context and motivation

Language ergonomics is essential. Language designers try hard to find ways to reduce
the friction that users experience when expressing programming tasks [Turon, 2017].
There is always a trade-off between conciseness and readability. The ergonomics is not
necessarily about less typing but rather about reducing the boilerplate code and the
distraction of expressing the implied. One way of doing this is to rely on a compiler and
its knowledge and understanding of the code to fill the “boring parts.” For example, in
functional programming, we often have to pass around a shared context, which can get
tedious and error-prone. A compiler could instead provide such an argument implicitly.
This idea of implicit parameters has been first explored by Lewis et al. [2000] in Haskell
and later popularized by Scala [Odersky et al., 2006] and by many other languages, e.g.,
Agda [Norell, 2007], Coq [Sozeau and Oury, 2008], Idris [Brady, 2013], OCaml [White
et al., 2015], and Flix [Madsen and Lhoták, 2018]. Even Google Torque6, a language for
developing the JavaScript V8 engine, features implicit parameters.

Next to implicit parameters, Scala also contains implicit conversion, which lets the
compiler automatically adapt data structures to the proper interface without the need
for explicit calls to constructors. Together, Scala implicits offload the task of selecting
and passing arguments to functions and converting between types to the compiler. This
allows one to implement language features outside of the compiler [Miller et al., 2013]
and write code with less boilerplate [Haoyi, 2016]. They have changed the way Scala
is used. Oliveira C. d. S. et al. [2010] showed how to use implicit parameters to im-
plement type classes [Wadler and Blott, 1989], which gave rise to complete ecosystems
of libraries for functional programming7. They have been used for embedding DSL in

4R assertion built-in.
5The most popular assertion library in R cf. https://github.com/hadley/assertthat
6cf. https://v8.dev/docs/torque
7cf. typelevel.scala (https://typelevel.org/) and ZIO (https://zio.dev/)
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Scala, establish or pass context, dependency injection, modeling capabilities, configu-
rations, and many other forms of contextual abstractions [Odersky et al., 2017; Miller
et al., 2014]. As Martin Odersky puts it, “If there’s one feature that makes Scala “Scala”, I
would pick implicits.” [Odersky, 2017]

// defines extension methods for String instances
implicit class StringEx(that: String) {

def enEspanol(implicit srv: Translator): String = srv.translate(that)
}
// defines a new Translator instance available in the implicit scope
implicit val traslator: Translator = ...

Listing 3.1: Example of Scala implicits

Example. Let’s consider the following code snippet: "Just like magic!".enEspanol

Without additional context, one would expect the code not to compile as the String

class does not have enEspanol method. In Scala, however, if the compiler can find a
conversion8 between a string and an instance of a class that has the required method
(which resolves the type error), that conversion will be inserted silently by the compiler
and, at runtime, the method will be invoked to return a value, perhaps "Como por arte

de magia!". The method will be defined with an implicit parameter to refer to a service
that can do the actual translation. A possible implementation is shown in Listing 3.1.
With these definitions imported into the scope of the original code snippet, the compiler
will rewrite the call to new StringEx("Just like magic!").enEspanol(translator).

The problem with implicits. While powerful, implicits are not without flaws:
− Anti-patterns. They can be easily misused, leading to a code that is hard to man-

age [Odersky, 2017]. A widely discussed anti-pattern is the conversion between
types in unrelated parts of the type hierarchy. The perceived danger is that any type
can be automatically coerced to a random type unexpectedly. Another anti-pattern
is conversions that go both ways. Since conversions are not visible, it is difficult to
reason about types at a given call site as some unexpected conversion could have
happened. An example is the, now deprecated, Java collection conversion. As they
were often imported together using a wildcard import, it was easy to mistakenly
invoke a Java method on a Scala collection and vice-versa, silently converting the
underlying data structures and possibly changing semantics9.

− Complexity. Complex use of implicits can lead to confusing scenarios or difficult-
to-understand code. Understanding implicit-heavy code can place an unreasonable

8Implicit conversions also appear in languages such as C++ or C#. However, the difference is that
their conversions are typically defined in the class participating in the conversion. In contrast, in Scala, the
implicit conversions can be defined in types unrelated to the conversion types. This allows programmers
to import conversion selectivelly. For instance, define an implicit conversion between String an Int.

9The notion of equality in Java collections is different from Scala collections (reference vs. element
equality)
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burden on programmers. A good example is the community backlash [Marshall,
2009] following the introduction of the Scala 2.8 Collections library [Odersky and
Moors, 2009], a design which made heavy use of implicits in an effort to reduce code
duplication. The design caused a proliferation of complex method signatures across
common data types throughout the Scala standard library. This eventually led to the
addition of use-cases10 into the Scala documentation tool to simplify complex method
signature.

− Overhead. Implicits have been observed to affect compilation-time performance, some-
times significantly. For example, a popular Scala project reported a three order-
of-magnitude speed-up when developers realized that an implicit conversion was
silently converting Scala collections to Java collections only to perform a single oper-
ation that should have been done on the original object.11 Another project reported
a 56-line file taking 5 seconds to compile because of implicit resolution. A one-line
fix changing the scope of one implicit definition improved compile time to a tenth of
second [Torreborre, 2017].

This work. Most of the above issues were reported in the form of anecdotal evidence.
This paper aims to provide empirical evidence about the use of implicits in the Scala
ecosystem. To document, for language designers and software engineers, how this fea-
ture is really used in the wild, using a large-scale corpus of real-world programs. We
provide data on how they are used in popular projects engineered by expert program-
mers as well as in projects that are likely more representative of how the majority of
developers use the language. This paper is both a retrospective on the result of in-
troducing this feature into the wild, as well as a means to inform designers of future
languages of how people use and misuse implicits.

3.3.2 Methodology

To understand the use of implicits across the Scala ecosystem, we have built an open-
source and reusable pipeline to automate the analysis of large Scala codebases, compute
statistics, and visualize results.

Pipeline. Figure 3.8 gives an overview of the pipeline. It includes the following steps:
1. Download projects hosted on GitHub.
2. Gather necessary metadata and, in particular, infer the build system each project uses.
3. Discard projects that do not meet the technical requirements of the analysis tools.12

4. Filter out duplicate and uninteresting projects.
5. Compile the corpus and generate semantic information.
6. Extract implicit usage from the semantic database.
7. Analyze the data.

10cf. https://docs.scala-lang.org/overviews/scaladoc/for-library-authors.html
11cf. https://github.com/mesosphere/marathon/commit/fbf7f29468bda2ec29b7fbf80b6864f46a825b7a.
12We only support SBT based projects with Scala version >= 2.11
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Figure 3.8: Scala Analysis pipeline. (1) is the size of source code, (2) is the size of source plus
compiled code and generated SEMANTICDB, (3) is the size of the extracted implicits data model,
(4) is the size of exported CSV files. The code size includes tests. The experiments were carried
on single node Intel Xeon 6140, 2.30GHz with 72 cores and 256GB of RAM.

The pipeline is reusable for other semantic analyses on Scala codebases, as only the
last two steps relate specifically to implicits. At the end of the Compile and generate
SEMANTICDB task, the corpus contains built projects with extracted metadata and SE-
MANTICDB files. These files contain low-level syntactic information as well as semantic
information about a compilation unit. Among others, it contains a list of symbols with
their types and a list of synthetic calls injected by the compiler. SEMANTICDB is gen-
erated using the SCALAMETA. The low-level data from SEMANTICDB are not suitable
for higher-level queries about the use of implicits. To this end, we have developed a
static analyzer that transforms the semantic data into our model that is easy to query.
It works in two steps: first, it resolves all implicit symbols and then extracts implicit
function applications from the synthetic calls. The resulting model can be queried using
the standard Scala collection API. Listing 3.2 shows how to list all implicit declarations
of the Translator class (cf. Listing 3.1) and the related call sites that use.

val declarations = proj.declarations.filter(dcl =>
dcl.isImplicit && dcl.isVal && dcl.returnType.isKindOf("Translator"))

val callsites =
proj.implicitCallsites.filter(cs =>

cs.implicitArguments.exists(arg => declarations contains arg))

Listing 3.2: Example of a query for implicits use

Corpus. We acquired and processed a corpus of 7,280 projects from GitHub with over
18,713,247 non-empty lines of Scala code. The corpus was obtained from publicly avail-
able projects listed in the GHTorrent database [Gousios, 2013] and Scaladex13. We started
with 65,177 non-empty, non-fork projects with 121.4M lines of code. Out of that, we fil-

13A package index of Scala projects published in Maven Central and Bintray, cf. https://index.
scala-lang.org/.
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tered out 41.5K incompatible and 12.5K duplicate / uninteresting projects. Since GitHub
is not a curated repository, it was essential to address the duplicates (cf. Section 2.2).

3.3.3 Results

A detailed discussion about the results is provided in Section 5 of the paper (cf. Ap-
pendix A.3). Here we will summarize the critical findings organized in the four main
categories: usage overview, patterns, complexity, and compilation-time overhead.

− Usage overview. Scala implicits are everywhere! Figure 3.9 shows the high-level
overview of the implicit usage in the corpus. Out of the 7,280 analyzed projects
(18.7M lines of code), 7,148 (98.2%) have at least one implicit call site. From over
29.6M call sites in the corpus (explicit and implicit combined), 8.1M are call sites in-
volving implicits. Most of these calls are related to the use of implicit parameters
(60.3%). There are roughly twice as many implicit call sites (38%) in tests than in
the rest of the code (17.1%). That is not surprising because the most popular test-
ing frameworks heavily rely on implicits. Across the project categories, the median
is 23.4%—i.e., one out of every four call sites involves implicits. There are 5,694 (78.2%)
projects that together define 370.7K implicit declarations.

− Patterns and anti-patterns. We have looked at the usage of the six main patterns:
late trait implementation (allowing a class to implement an interface after the class
has been defined), extension methods (adding methods into existing classes), type
classes, extension syntax methods (a combination of type classes with extension
methods), type proofs and contexts; and two main anti-patterns: unrelated and bidi-
rectional conversions. The majority of projects use type classes and extension meth-
ods. As expected, they are mostly defined in libraries.
About 6.1K projects use unrelated conversions, but only 552 using unrelated conver-
sions between primitive types. They are present in all categories, but the majority
comes from libraries where they are used as building blocks for DSLs. A very few
(81 in 47 projects) convert just between primitive types. In 1.9K projects, we have
seen the use of bidirectional conversion. From a manual inspection of bi-directional
conversion, we find that they are mainly used in libraries that provide both Java and
Scala API. This suggests that most implicit conversions are safe.

− Complexity. Most of the call sites that involve implicits receive between 0-2 implicit
arguments. However, the distribution has a long tail, and the project that rely on
type-level programming contain implicit-heavy call sites. With the increasing popu-
larity of libraries that use implicit type-class derivation for algebraic data types, the
programmers are likely to deal with more complicated calls. To help navigate this
complexity, the Scala plugin for Intellij IDEA has a feature that can show implicit
hints, including implicit resolution in the code editor. This effectively reveals the
injected code making it an indispensable tool for debugging. However, turning the
implicit hints on severely hinder’s the editor performance creating a significant lag
when working with implicits-heavy files.
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− Overhead. We looked at the compilation times of all 488 projects (2.8M lines of code)
that use the shapeless library and compared them to 1.9K other projects that use
Scala version for, which we could get detailed compilation statistics14. This shapeless
library provides the most common approach for implicit type-class derivation [Can-
tero, 2018]. The data confirm the hypothesis that the cost of compilation increases
with the density of implicits, and the use of type classes further reduces compilation
speed.
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Figure 3.9: Overview of the implicits in the corpus. The top of the graph shows the ratio of call
sites in each project that involves implicit resolution. The bottom shows the number of implicit
definitions in each project.

14The -Ystatistics:typer compiler flag was introduced in Scala 2.12.4.

31





CHAPTER 4
Conclusions

Democratizing code sharing through large code-hosting websites opens whole new op-
portunities in understanding and improving programming languages. Using program
analysis, we can get empirical evidence about how languages and libraries are used in
real-world projects. These insights can then help us better evaluate the changes needed
to grow languages to better adapt to their users’ needs.

In this thesis, we have presented three large-scale program analyses. They all seek an-
swers to questions to understand better the use of the R and Scala programming lan-
guages:

− In Tests from Traces: Automated Unit Test Extraction for R, the question we aim to an-
swer is: how well can automated trace-based unit test extraction actually work in practice?
The metrics of interest are the quality of the extracted tests, their coverage of the tar-
get project, and the costs of the whole process. To answer it, we have built Genthat,
a tool for the automated extraction of unit tests for the R language. Our evaluation
of this tool on a large corpus of packages suggests that it can significantly improve
coverage. On average, the default tests that come with the packages cover only 19%,
while with tests extracted by GENTHAT, the coverage increases to an average of 53%.

− In Designing Types for R, Empirically, the question was about what expressive power
do we need to ascribe types to R function? The longer-term goal is to retrofit a type
system into R, but in this work, we only look at function signatures. To answer the
question, we have designed a simple type language focusing on the most widely
used features of R. We evaluated the design by inferring and subsequently checking
function signatures on several widely used R packages. Overall, we found that our
simple design fits quite well with the existing language. Nearly 80% of functions
are either monomorphic or have only one single polymorphic argument, less than
2% of contracts generated from the inferred function signatures failed at runtime.
Moreover, using the type language would eliminate or otherwise simplify 61% of
existing type checks and assertions in user code.
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− In Scala Implicits are Everywhere we asked how Scala implicits are used in the wild? To
answer this question, we have analyzed all open-sourced Scala projects available
on GitHub for which we could extract semanatic information. The results showed
that Scala developers embraced them. Almost all projects use at least one implicit
parameter or implicit conversion, and over 78.2% define them. Every fourth call
site involves the use of implicits. Most of the implicit call sites are simple, but the
complexity increases with libraries that rely on implicit type-class derivation. The
same libraries also increase the compilation time.

Program analysis of large code repositories is hard. In part, this is because scaling pro-
gram analysis is hard. A linear increase in the analyzed code size results in a non-linear
increase in the analysis’s complexity. But part of the challenge is that substantial code
only comes in the context of realistic programming language that has been around for a
while. Working with real code invariably entails infrastructure building, which requires
substantial engineering effort.

In the case of R, this was particularly painful as we had to develop the complete
analysis toolchain. However, now we can finally amortize the engineering cost and use
the tools for a number of future work: Continue in the endeavor of retrofitting a type
system into R. Extend GENTHAT with symbolic execution and value fuzzing to generate
more tests and extend the code coverage of the R package. Study the use of eval in R
and work on tooling that could remove it. Finally, we would like to put the insights into
real use by feeding them into Ř, an alternative just-in-time compiler for R developed in
our research group [Flückiger et al., 2020].
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APPENDIX A
Papers

In this appendix, we enclose the copies of the papers presented in this thesis. They
are in their published version, including the ACM badges1 received from the artifact
evaluation from each corresponding conference.

1Details about ACM artifact reviews and badging can be found at ACM website, cf. https://www.acm.
org/publications/policies/artifact-review-badging
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A.1 Tests from Traces: Automated Unit Test Extraction for R

Tests from Traces: Automated Unit Test Extraction for R by Filip Křikava and Jan Vitek, pub-
lished in Proceedings of the 27th ACM International Symposium on Software Testing and Anal-
ysis (ISSTA), August 2018 [Křikava and Vitek, 2018a].
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A.2 Designing Types for R, Empirically

Designing Types for R, Empirically by Alexi Turcotte, Aviral Goel, Filip Křikava and Jan Vitek
published in Proceedings of the ACM Programming Languages 4, OOPSLA, Article 181,
November 2020 [Turcotte et al., 2020c].
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Designing Types for R, Empirically

ALEXI TURCOTTE, Northeastern University, USA
AVIRAL GOEL, Northeastern University, USA
FILIP KŘIKAVA, Czech Technical University, Czechia
JAN VITEK, Northeastern University, USA and Czech Technical University, Czechia

The R programming language is widely used in a variety of domains. It was designed to favor an interactive
style of programming with minimal syntactic and conceptual overhead. This design is well suited to data
analysis, but a bad fit for tools such as compilers or program analyzers. In particular, R has no type annotations,
and all operations are dynamically checked at runtime. The starting point for our work are the two questions:
what expressive power is needed to accurately type R code? and which type system is the R community willing to
adopt? Both questions are difficult to answer without actually experimenting with a type system. The goal of
this paper is to provide data that can feed into that design process. To this end, we perform a large corpus
analysis to gain insights in the degree of polymorphism exhibited by idiomatic R code and explore potential
benefits that the R community could accrue from a simple type system. As a starting point, we infer type
signatures for 25,215 functions from 412 packages among the most widely used open source R libraries. We
then conduct an evaluation on 8,694 clients of these packages, as well as on end-user code from the Kaggle
data science competition website.
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1 INTRODUCTION
Our community builds, improves, and reasons about programming languages. To make design
decisions that benefit users, we need to understand our target language as well as the real-world
needs it answers. Often, we can appeal to intuition, as many languages are intended for general
purpose programming tasks. Unfortunately, intuition may fail us when looking at domain-specific
languages designed for a particular group of users to solve specific needs. This is the case of the
data science language R.
R and its ancestor S were designed, implemented, and maintained by statisticians. Originally

they aimed to be glue languages for statistical routines written in Fortran. Over three decades
they became widely used across many fields for exploratory data analysis. Modern R is fascinating
as an object of study. It is a vectorized, dynamically typed, lazy functional language with limited
side-effects, extensive reflective facilities and retrofitted object-oriented programming support.

Many of the design decisions that gave us R were intended to foster an interactive and exploratory
programming style. These include, to name a few salient ones, the lack of type annotations, the
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ability to use syntactic shortcuts, and widespread conversion between data types. While these
choices have decreased the barrier to entryÐmany data science educational programs do not teach
R itself but simply introduce some of its key librariesÐthey also allow for errors to go undetected.
Retrofitting a type system to the R language would increase our assurance in the result of

data analysis, but this requires facing two challenges. First, it is unclear what would be the right
type system for a language as baroque as R. For example, one of the most popular data type, the
data.frame, is manipulated through reflective operationsÐa data frame is a table whose columns
can be added or removed on the fly. Second, but just as crucially, designing a type system that will
be adopted would require overcoming some prejudices and educating large numbers of users.
The goal of this paper is to gather data that can be used as input to the process of designing a

type system for R. To focus our work, we chose to limit the scope of investigation on the design of
a language for function type signatures. Thus, this paper will use the collected data to document
the signatures of user-defined functions. For this, we design a simple type language that matches
the R data types. We then extract call and return types from execution traces of a corpus of widely
used libraries, and finally synthesize type signatures. This allows us to see how far one can get
with a simple type language and identify limitations of our design. We validate the robustness of
the extracted type signatures by implementing a contract checker that weaves types around their
respective functions, and use end-user code and clients of the target packages for validation.

To sum up, we make the following contributions:
• We implemented scalable and robust tooling to automatically extract type signatures and
instrument R functions with checks based on their declared types.

• We carried out a corpus analysis of 412 widely used and maintained packages to synthesize
function type signatures and validated the robustness of the signatures against 160,379
programs that use those functions.

• We report on the appropriateness and usefulness of a simple type language for R.
• Our data and code are open source and publicly available.1

2 BACKGROUND
This section introduces related work and gives a short primer on R.

2.1 Related Work
Dynamic programming languages such as Racket, JavaScript, PHP and Lua have been extended post
factum with static type systems. In each case, the type system was carefully engineered to match
the salient characteristics of its host language and to foster a particular programming style. For
example, Typed Racket emphasizes functional programming and migration from untyped to fully
typed code [Tobin-Hochstadt and Felleisen 2008], Hack [Verlaguet 2013] and TypeScript [Bierman
et al. 2014] focus on object-oriented features of PHP and JavaScript, respectively. They allow users
to mix typed and untyped code in a fine-grained manner. In the case of Lua [Maidl et al. 2014], the
type system tried to account for the myriad ways Lua programmers use tables. Other languages
adopted a mix of typed and untyped code by design. In Julia, type annotations are needed for
method dispatch and performance [Bezanson et al. 2018]. In Thorn, users could freely move between
typed and untyped code thanks to the addition of like types [Wrigstad et al. 2010]. Lastly C# is an
example of a statically typed language which added a dynamic type [Bierman et al. 2010].

But what if the design of the type system is unclear? Andreasen et al. [2016] propose a promising
approach called trace typing. With trace typing, a new type system can be prototyped and evaluated

1 github.com/PRL-PRG/propagatr, github.com/PRL-PRG/contractr, data: doi.org/10.5281/zenodo.4091818, artifact: doi.org/
10.5281/zenodo.4037278
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by applying the type rule to execution traces of programs. While the approach has the limitation
of dynamic analysis techniques, namely that the results are only as good at the coverage of the
source code, it allows one to quickly test new design and quantify how much of a code base can be
type-checked. Other approaches that infer types for dynamic analysis include the work of Furr
et al. [2009] and An et al. [2011] for Ruby.
Recent work has gone into adding types to Python, the other eminent data science language.

Typilus is an interesting piece of recent work which explores using neural networks to infer types
for Python programs [Allamanis et al. 2020], and Python itself added support for type hints in
Python 3.5 [Python Team 2020]. There is no previous work on types for R. We take inspiration in
the aforementioned works but focus on adapting them to our target language.

2.2 The R Language
The R Project is a key tool for data analysis. At the heart of R is a vectorized, dynamic, lazy,
functional, object-oriented language with an unusual combination of features [Morandat et al.
2012]. R was designed by Ihaka and Gentleman [1996] as a successor to S [Becker et al. 1988].

R’s main data type is the primitive vector. Vectors are explicitly constructed by the constructor
c(...), as in c(1L, 2L, 3L) which creates a vector of three integers. R has a builtin notion of
type that can be queried with the typeof function. Figure 1 lists all of the builtin types provided
by the language; these are the possible return values of typeof. There is no intrinsic notion of
subtyping in R, but in many contexts a logical will be coerced to integer, an integer will
be coerced to double, and a double will be coerced to complex. Some odd conversions occur in
corner cases, such as 1<"2" holds and c(1,2)[1.6] returns the first element of the vector, as
the double is converted to an integer. R does not distinguish between scalars and vectors (they
are all vectors), so typeof(5) == typeof(c(5)) == typeof(c(5,5)) == "double". All vectorized data
types are monomorphic, except list which can hold values of any type, including list. For all
monomorphic data types, attempting to store a differently-typed value will cause a conversion:
Either the value is converted to the type of the vector, or vice versa.

Vectors:
logical vector of boolean values
integer vector of 32 bit integer values
double vector of 64 bit floating points
complex vector of complex values
character vector of strings values
raw vector of bytes
list vector of values of any type
Scalars:
NULL singleton null value
S4 instance of a S4 class
closure function with its environment
environment mapping from symbol to value
Implementation:
special, builtin, symbol, pairlist, promise
language, char, ..., any, expression,
externalprt, bytecode, weakref

Fig. 1. Builtin Types

All vectorized data types have a distinguished miss-
ing value denoted by NA (for łnot availablež). The type
of NA is logical (typeof(NA)=="logical"), but NA in-
habits every type: typeof(c(1,NA)[2]) == "double".
R also has a NULL value. In data science, it is useful to
have a notion of a łmissing observationž, since vec-
tors are monomorphic there is a need for a missing
value to inhabit each primitive type. In a sense, NA rep-
resents a missing data point, whereas NULL represents
a missing data set.

Over time, programmers have found the need for a
richer type structure. R supports this with attributes.
One may think of attributes as an optional map from
names to values attached to any built in type. At-
tributes are used to encode various type structures,
and they are queried with attributes. Using at-
tributes, programmers can extend the set of types
by tagging data. For example, take the vector of
four values, x<-c(1,2,3,4) and attach attribute dim,
attr(x,"dim")<-c(2,2), to treat x as a 2x2 matrix.
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Another attribute that can be set is the class, which is one way to use R for object-oriented
programming. The class attribute can be queried with class, and it can be bound to a list of
class names: For instance, class(x)<-c("human", "friend") will set the class of x to be human and
friend. There are three object-orientation frameworks in R: S3, S4, and R5. The S3 object system
support single dispatch on the class of the first argument of a function, whereas the S4 object
system allows multiple dispatch. R5 allows for users to define objects in a more imperative style.
Some of the most widely used data types leverage attributes, e.g., data frames and matrices. A data
frame, for instance, is a list of vectors with a class and a column name attribute, and matrices are
vectors with a dims attribute.

R functions have a number of quirks. Arguments can be assigned arbitrary expressions as default
values; functions take variable numbers of parameters, and can be called positionally and nominally.
Consider this example:

f <- function(x,..., y=if(z==0) 1, z=0) { x + y + if(missing(...)) 0 else c(...) }

This function has four formal parameters, x, dots, y and z. Parameter x can be bound positionally
or passed by name. The dots, ..., is always positional. The remaining two parameters must be
passed by name as they are preceded by dots; y and z have default values, in the case of z this is
a constant, but y is bound to an expression that depends on z’s value (if z is not zero, y defaults
to NULL). The body of the function will add x and y to either 0 or the result of concatenating the
dots into a primitive vector. The function missing tests if a parameter was explicitly passed. The
following are some valid invocations of f:

> f(1)
[1] 2 # a double vector, y is 0, ... is missing

> f(2, 3, x=1)
[1] 4 5 # a double vector, y is 0, ... is 2, 3

> f(x=1, y=1)
[1] 2 # a double vector, y is 1, ... is missing

> f(x=1, z=1)
numeric(0) # a double vector of length 0, y is NULL

> f(1L, 2L, y=1L)
[1] 4 # an integer vector, y is integer 1, ... is integer 2

> f(1, y=c(1,2))
[1] 1 2 # a double vetor, y is 1, 2, ... is missing

The above hints at polymorphism: f may return a vector of integers or of doubles of length equal
to the max length of its arguments.

3 A TYPE LANGUAGE FOR R
In this section, we set out to propose a candidate design for a type language to describe the
signatures of R functions. The goal is not to propose a final design, but rather a starting point for
an iterative process.
Given the peculiarities of the language there are a number of design choices that need to be

reviewed and evaluated. It is not controversial to include types that cover the six kinds of primitive
vectors, furthermore environments and the distinguished null types are commonly used and must
be included. Environments are lists with reference semantics: mutating a value in an environment
is performed in-place. They are used to store variables and to escape from the copy-on-write
semantics of other data types. For simplicity, we omit some of the data types that closer to the
implementation of the language. Fig. 2 presents our type language.
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T ::= any top type
| null null type
| env environment type
| S scalar type
| V vector type
| T | T union type
| ? T nullable type
| ⟨A1, . . . An⟩ → T function type
| list⟨T ⟩ list type
| class⟨ID1, . . . IDn⟩ class type

A ::= T arguments
| ... dots

V ::= S[] vector types
| ^S[] na vector types

S ::= int integer
| chr character
| dbl double
| lgl logical
| clx complex
| raw raw

Fig. 2. The R type language

Scalar. While R does not have scalar data types, there are cases where functions expect scalar
values, for example a conditional takes a single logical and will complain if more values are passed.
We considered tracking dimensions of data structures, but decided against it. Instead, the type
language differentiates between vectors of lenght 1 and vectors of any dimension. The primitive
types can be either vectors (e.g., int[]) or scalars (e.g., int). A vector can happen to be of length
1, which we handle with subtyping, shown later. Vectors are monomorphic, a vector of doubles
contains only doubles.

Missing. Each primitive type has its specific NA. Many built-in functions, especially those imple-
mented in C or Fortran, do not support NA values. It is thus advantageous to distinguish between
vectors that can and cannot contain missing values. In our experience, functions that expect scalar
values tend to not admit NAs, thus scalar types are treated as being NA-free. The type language
allows one to write ^int[] to specify that a vector of integers may have NAs and int[] to say that
a vector must not have missing values. The type raw does not allow NAs, so ^raw[] is NA-free. R
does not provide a built-in type testing mechanism, e.g., for the case of NA-free data types, it is
necessary to scan vectors to find out if they have missing values.

Nullable. The null type is inhabited by a singleton NULL value often used as a sentinel. Unlike in
some other lanugage, NULL is not the default value of uninitialized variables. R has different notion
for that (which we do not cover here). To capture common uses of NULL, the type language has a
nullable type, written ? T . Values of this type can be either values of type T or NULL.

Lists. Heterogeneous collections are implemented using lists. Lists and vectors are closely related:
a vector converts to a list with as.list, and lists to vectors with unlist (coercions may ensue).
The type language allows one to specify that a value is a list containing element of some type T ,
written list⟨T ⟩. R does not have built-in type tests for this purpose, to establish the type of a value
requires traversal and checking individual elements.

Class. R has three objects systems, code-named S3, S4 and R5. All of them operate by adding a
class attribute to values. The most widely used system by far is S3, which supports single dispatch
and multiple classes [Morandat et al. 2012]. The challenge from a type system point of view is
that a value (such as an integer 5L) could be attributed with a class. Code that performs dispatch
would use the class attribute while code that does not would view the value as an integer. The type
language focuses on the attribute, and will hide the underlying type of the value. While this seems
to match common usage, it does represent a loss of expressiveness. The type language also focuses
on S3, and we leave the other object systems for future work. S3 has no notion of inheritance, each
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value has a list of classes. The type language thus allows to write class⟨ID1, . . . , IDn⟩ to denote
values tagged with the class names ID1 to IDn .

Union. We support untagged unions of types written T1 | ... | Tn . The elements of unions are not
disjoint, e.g., 1L is both an int, a int[] and a ^int[].

Function. Functions signatures the form ⟨A1, . . . ,An⟩ → T where each Ai argument is either a
type T or dots (...), a variable length argument list. Moreover, a single function’s signature can be
the disjunction of a number of individual signatures.

Overall, the choice of type language follows the structure of values. The presence of NA-free data
types and scalars are two choices that must be validated in practice. Note that nullable types are
really just a special case of unions (i.e., ? T is shorthand for T | NULL).

3.1 Subtyping
R does not support the notion of subtyping between values, but we include a few simple rules in
our framework to capture widespread coercion. The conversions between primitive types give us a
starting point (e.g., an int is always accepted where a dbl is expected). Furthermore, the types
introduced above induce some the rules of Figure 3: an NA-free vector is a subtype of its NA-ful
equivalent, a value of type T is a subtype of a nullable T , a list is subtype of another list if their
elements are subtypes, and a scalar is a subtype of a vector of the same primitive type.

S[] <: ^S[]
T <: ? T

list⟨T ⟩ <: list⟨T ′⟩ iff T <: T ’
S <: S[]

lgl <: int
int <: dbl
dbl <: clx

Fig. 3. Subtyping

3.2 Synthesizing Signatures
Later in this paper, we will introduce a tool to synthesize function type signatures from running R
code, wherein each invocation of a function will generate a trace representing the types of function
arguments and returns. These traces will be combined into an overall arrow type for the function,
and in order to keep these signatures compact we compact the traces into a single top-level arrow
with unions at each argument position. Thus, the shape of function signatures will be:

⟨T1,1 | T1,i , . . . ,Tn,1 | Tn, j ⟩ → T1 | ... | Tk
In other words, we take the union of the types occurring at individual argument positions rather
than an union of function types. Furthermore, we apply some transformation on the types to keep
the size of types in check. Figure 4 overviews the main simplification rules we adopted.
Assuming that type sequences can be reordered freely, we rewrite types to minimize their size

by removing redundant types, types that are subsumed by subtyping, immutable lists, and replace
null types with nullables. Higher-order functions are conservatively treated as any → any.

It is noteworthy that by performing this compaction we are losing precision, and the synthesized
signatures will suggest combinations of argument types that were not observed.
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T | T ⇒ T
T | T ′ ⇒ T iff T ′ <: T

list⟨T ⟩ | list⟨T ′⟩ ⇒ list⟨T ⟩ iff T ′ <: T
null | S1[] | . . . Sn[] ⇒ Ŝ1[] | . . . Ŝn[]

Fig. 4. Simplification rules

4 ANALYSIS AND INSTRUMENTATION PIPELINE
For this paper, we have built tooling to (a) automate the extraction of raw type signatures from
execution traces, (b) infer type signatures from a set of raw types, and (c) validate the inferred
signatures by the means of contracts. Figure 5 shows an overview of this pipeline. This section
gives details of the main steps. The pipeline is run using GNU parallel [Tange et al. 2011] on Intel
Xeon 6140, 2.30GHz with 72 cores and 256GB of RAM.

Create CRAN
mirror

Extract package
metadata 
- code size

- code coverage
- reverse dependencies

code coverage

Extract 
raw type traces

Infer 
function type

signatures
Validate inferred

signatures

Packages:

Code size:

1hDuration: 2d1 10h 5h 5h

15K

31.6M

412

1.3M

412

running: 385K

412 running: 8,694

running: 19.6M

Size: package: 8 GB packages: 1 GB traces: 604 GB types: 5MB N/A

N/A

Fig. 5. The Analysis Pipeline; 1 metadata has to be extracted for all CRAN packages.

4.1 Types from Traces
We implemented Typetracer, an automated tool for extracting types from execution traces of R
programs. The goal of this tool is to output a tuple ⟨f , t1, . . . , tn , t⟩ for each function call during
the execution of a program, where f is an identifier for a function, ti are type-level summaries of
the arguments and t is a summary of the return value.

While seemingly simple, the details and their proverbial devil are surprisingly tricky to get right
at scale. Our implementation reuses R-dyntrace, an open source dynamic analysis framework for
R [Goel and Vitek 2019] which consists of an instrumented R Virtual Machine based on GNU-R
version 3.5.0. The framework exposes hooks in the interpreter to which user defined callbacks can
be attached. These hooks include function entry and exit, method dispatch for the S3 and S4 object
systems, the longjumps used by the interpreter to implement non-local exit, creation and forcing
of promises, variable definition, value creation, mutation and garbage collection.

Types. The type information output by the tool includes the type tag of each value. Internal types
are translated to names in the proposed type language. The next bit of information is the class,
an optional list of names that may be absent, and, in some cases, is implicit (i.e. the interpreter
blesses some values with the matrix and array classes even without attributes). Depending on
a value’s type, the tool collects further information: (a) for vectors, the presence of NA values, (b)
for lists, element types by a recursive traversal, and (c) for promises, an approximation of the
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expression type. To obtain these types, we make use of R’s C FFI and use low-level machinery to
collect information from the R run-time. Types are completed during post-processing, and rely on
the detailed information made available by these reflection mechanisms.

Promises. The fact that arguments are lazy (expressions are packed into promises and only
evaluated on first access) complicates information gathering. For example, some promises may
remain unevaluated, and it would be erroneous to force them as they may side-effect and change
program behavior. To deal with unevaluated arguments, we make an initial guess for each argument
at function entry and update the recorded type if the promise is forced.

Missing Arguments. Parameters which receive no values when the function is called are termed
missing (not to be confused with NA). This occurs when a function is called with too few arguments
and no default values are specified for those missing arguments. We record a missing type for
such arguments. There are two obvious ways to deal with missing arguments: type them as any or
type them as some unit type. We conservatively type them as any.

Non-local Returns. When a function exits with a longjump, there is no return value to speak of.
To ensure call traces are valid when a longjump occurs, we intercept the unwinding process and
record a special jumped return type for function returns that are skipped. As we cannot be sure of
the intended return value, these jumped values become any types.

Dots. Arguments that are part of a dots parameter (denoted ...) are ignored. We do not attempt
to give dots a type.

Implementation Details. We primarily rely on eight callbacks: closure_entry, closure_exit,
builtin_entry, builtin_exit, special_entry, special_exit, promise_force_entry, and fi-
nally promise_force_exit. The function-related callbacks are used mainly for bookkeeping: the
analysis is notified that a construct has been entered by pushing the call onto a stack. The calls
themselves store a trace object that holds the type information. As R can perform single or multiple
dispatch on function arguments depending on their class, the relevant information is kept by the
_entry variants.

4.2 Checking Signatures with Contracts
One can validate a function’s type signature by checking that it is respected in all programs that
call the function. For this, we developed ContractR, an R package that decorates functions with
assertions. We use it to insert type checking code around functions. For speed, ContractR’s primary
logic is implemented in C++. It has been tested with GNU R-3.5.0 and hardened with a battery
of 400 test cases. An invocation of library(contractr) causes contracts to be injected. ContractR
scans all packages in the workspace and inserts contracts in functions for which type signatures are
available. Package load hooks are executed when new packages are loaded. ContractR automatically
removes contracts from all functions and restores them to their original state when it is unloaded.
The type signatures can be provided in an external file, thus avoiding the need to change the source
code of checked packages. Type declarations can also be written in comments using Roxygen2
annotations, using the @type tag:

#' @type <chr> => int
#' @export
file_size <- function(f) { ... }

The injected contracts check arguments with a simple tag check when possible. Some properties
require traversing data structures, such as the absence of NA. For union types, multiple checks may
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be needed, at worst one per member of the union. In order to retain the non-strict semantics of
R, the expression held in a promise is wrapped in a call to the type checker, and type checking
is delayed until the promise is forced. This leads to corner cases such that the type checking of a
function may happen after that function has returned. Return values require care as well. Functions
return the last expression they evaluate, thus a callback is added to the exit hook. Another wrinkle
is due to longjumps which causes active function calls on the stack to be discarded. When they are
discarded, their exit hooks are called but they do not have a return value to type-check. ContractR
deals with this problem by allocating a unique sentinel object which serves as the return value for
calls that are discarded. The exit hook does not call the type-checker if it see the sentinel.

5 PROJECT CORPUS
Our aim is to gather data with which we can validate our type language design. To that end, we
propose an experiment wherein we use Typetracer to synthesize types for some core corpus of
packages, and validate those types by using ContractR and installing contracts on core corpus
functions and running the client code of this corpus.
For this paper we have selected 412 packages consisting of 760.6K lines of R code and 534.4K

lines of native code (C/Fortran). Figure 6 shows these packages: the size of the dots reflects the
project’s size in lines of code including both R and native code2, the x-axis indicates the expression
code coverage as a percentage and the y-axis gives the number of reverse dependencies in on log
scale. Dotted lines indicate means. Packages with over 5K lines of code are annotated.
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2Lines of source code reported excludes comments and blank lines, counted by cloc, cf. https://github.com/AlDanial/cloc
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These packages come from the Comprehensive R Archive Network (CRAN3), the largest reposi-
tory of R code with over 15.4K packages4 containing over 19.6M and 12.2M lines of R and native
code respectively. Unlike other open code repositories such as GitHub, CRAN is a curated repository
where each submitted package must abide by a number of well-formedness rules that are auto-
matically checked to assess package quality. Notably, CRAN packages must have a set of runnable
example, test, and vignette code which showcase package functionality. The code is run by CRAN,
and only a successfully running package is admitted to the archive.

We have downloaded and installed all available CRAN packages. Out of the 15.4K packages, we
managed to install 13.5K. The main reason for this is that R-dyntrace (and, by extension, Typetracer)
is based on GNU-R 3.5.0 and some of the packages are not compatible with this version. Some
packages also require extra native dependencies which were not present on our servers.
We defined two criteria for including a package into the corpus: (1) the package must have

runnable code that covers a significant part of the package source code from which type signatures
could be inferred, and (2) the package must have some reverse dependencies that will allow us
to evaluate the inferred types, using the runnable code from these dependencies. The concrete
thresholds used were: at least 65% of expression coverage and at minimum 5 reverse dependencies.
The code coverage was computed for each package using Covr5, the R code coverage R tool. The
reverse package dependencies were extracted from the package metadata using built-in functions.

The 412 selected packages contain 385.8K lines of runnable code in examples (98.9K), tests (258K)
and vignettes (28.9K). Running this code results on average in 80.8% package code coverage (the
average for all of CRAN is 65.6%). Together, there is 18.8K (on average 45.5, median 12; CRAN
average is 12.8, median 2) reverse dependencies with 11.2M runnable lines of code resulting in
45.9% coverage (on average) of the corpus packages. Together there are 38.2K defined R functions
(17.4K are from the packages’ public APIs). 11.8K are S3 functions, either S3 generics or S3 methods.
Packages in the corpus define 81 S3 classes.

User Code. To represent end-user code in the corpus, we turned to Kaggle, an online platform for
data science andmachine learning. The website allows people to share data science competitions and
data analysis problems together with data for which users try to find the best solution (something
like a repository of hackathon or datathon code). The solutions, called kernels, are then posted
on Kaggle either as plain scripts or as notebooks. One of the most popular competitions is about
predicting passenger survival on Titanic6 with 2,890 kernels in R (over 1/4 of all available R kernels)
which we used for our corpus.

Unlike CRAN, Kaggle is not a curated repository and therefore there are no guarantees about
the quality of the code. After downloading all of the 2,890 kernels and extracting the R code from
the various formats,7 we found that 1,079 were whole-file duplicates (37.3%). From the resulting
1,811 kernels, 1,019 failed to execute. Next to various runtime exceptions, common problems were
missing libraries (no longer available for R 3.5), parse errors, and misspelled package names. The
final set contains 792 kernels with 33.7K lines of R code. The Kaggle kernels are used for additional
validation of the inferred types.

Type Usage. During execution, 3,147 different types were observed. Classes are the most common
types, accounting for roughly 31% of types of arguments. The most common classes are matrices

(12%), data.frames (7.5%), formulas (2%), factors (2%), and tibbles (2%). Roughly 25% of classes are
3http://cran.r-project.org
4CRAN receives about 6 new package submissions a day [Ligges [n. d.]]
5https://github.com/r-lib/covr
6https://www.kaggle.com/c/titanic
7We use rmarkdown to convert from notebooks to R.
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part of R’s base libraries, the others are user-defined. Scalars and vectors are the next most common
kind, making up 41% of remaining types. with scalars making up 28% of types and vectors 12%.
Nulls and lists follow at 8% and 7% respectively, and the vararg type makes up 6% of arguments.
This all totals up to over 90% of types. Table 1 reports on the 10 most frequent types occurring in
the corpus. The first row of the table reads: the dbl type occurs in 12,298 (11.24%) argument types,
and accounts for over 12 million (20.3%) of the types observed by Typetracer’s dynamic analysis.

Table 1. Top types of arguments in R

Type Args % of Args Observations % of Obs.

dbl 12,298 11.24 12,152,787 20.3
lgl 9,366 8.7 6,650,294 11.1
null 8,799 8.0 2,187,611 3.7
chr 8,727 8.0 2,564,207 4.3
dbl[] 7,190 6.6 4,934,773 8.2
... 6,611 6.0 6,075,874 10.1
any 6,120 5.6 339,299 0.6
chr[] 4,325 4.0 1,060,466 1.8
class⟨matrix⟩ 4,152 3.8 2,805,718 4.7
class⟨data.frame⟩ 2,608 2.4 352,655 0.6

6 EVALUATION
We ran Typetracer on the test, example, and vignette code of the aforementioned corpus of 412
packages and successfully inferred types for 25,215 functions. Table 2 illustrates the process with
ten representative signatures. Many of the features of our type language are represented here, and
some signatures are telling of the function’s behavior. For example, consider decrypt_envelope:
the first three parameters of the function are byte arrays, and the fourth argument is an RSA
key, used to decrypt some of the inputs, and the output of the function is another byte array. As
another example, consider Traverse: according to the function documentation, it takes the root
of a tree and traverses it in an order specified by the second argument. We see that reflected in
the type, where the first argument has type class⟨Node, R6⟩ and the second argument had type
chr[], representing the traversal order.

Table 2. Select Type Signatures

Function Type Signature
dplyr::group_indices ⟨class⟨data.frame⟩, ...⟩ → int[]
moments::all.cumulants ⟨class⟨matrix⟩ | dbl[]⟩ → class⟨matrix⟩ | dbl[]
diptest::dip ⟨dbl[], chr | lgl, lgl, dbl⟩ → class⟨dip⟩ | dbl
stabledist::cospi2 ⟨dbl[]⟩ → dbl[]
matrixcalc::matrix.power ⟨class⟨matrix⟩, dbl⟩ → class⟨matrix⟩
data.tree::Traverse ⟨class⟨Node, R6⟩, chr[], any, any⟩ → list⟨any⟩
openssl::decrypt_envelope ⟨ raw[], raw[], raw[], class⟨key, rsa⟩, any⟩ → raw[]
dbplyr::set_win_current_group ⟨? chr[]⟩ → ? chr[]
openssl::sha256 ⟨ raw[], ? raw[]⟩ → raw[]
forecast::initparam ⟨?dbl, any, any, any, chr, chr, lgl, dbl[], dbl[], any⟩ → dbl[]
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This section attempts to evaluate how well the proposed type language is able to describe the
actual type signatures of functions. For this we focus on how often there is a single type for a
particular argument; this is because union types and any are less accurate (and would likely require
a more refined notion of subtyping or parametric polymorphism). Then, we evaluate how robust
the inferred signatures are by checking that they remain valid for other inputs. Lastly, we try to
see if the current proposal would be useful to programmers by allowing them to remove ad hoc
checks and providing useful documentation.

6.1 Expressiveness
The first part of our evaluation attempts to shed light on how good a fit our proposed type language
is with respect to common programming patterns occurring in widely used R libraries.

0 20 K 40 K 60 K

> 3

3

2

1

0 20% 40% 60% 80%

Positions

T
y
p

e
s

Fig. 7. Size of unions

First we look at the share of monomorphic arguments and function signatures. Monomorphic
in this context means that the type is not relying on any or including a union. The import of
monomorphism in this context is that it means our type language can accurately capture an
argument’s type or a function’s signature. We get to that number in two steps. Fig. 7 shows the
number of inferred argument types and their size (in terms of members of the union). The figure
shows that most functions do not require a union at all (83.1% of arguments do not have a union),
and only 2.5% of positions have unions with more than three members.

Table 3. Singleton Type Categories

Types Parameter # % Cumulative %
scalar 35064 33.33 33.33
class 24256 23.06 56.39
vector 13025 12.38 68.77
... 9142 8.69 77.46
null 7694 7.31 84.77
any 7614 7.24 92.01
list 3558 3.38 95.39
^vector 2923 2.78 98.17
function 1427 1.36 99.52
environment 500 0.48 100.00

Table 3 provides a breakdown of types occurring in arguments without a union. Scalar, class
and vector are the most common type categories. The shaded rows correspond to polymorphic
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types. When an argument’s type is inferred to be null, we say that the argument is polymorphic
due to a limitation in our analysis: In R, it is common for programmers to include default values
for arguments, and in many cases this value happens to be NULL. Our type analysis will report a
null type for these arguments if they are never passed a value during testing. We interpret these
instances of null as polymorphic to capture that we cannot be sure of the actual type.

Removing the aforementioned instances of polymorphism gives us 68.9 K (60.4%) monomorphic
positions in a corpus of 114 K parameters. With close to 60% of monomorphic argument or return
values, it is fair to say that even a simple type language provides significant benefits.
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Fig. 8. Function Polymorphism

If we look at the numbers from the point of view of functions and count how many of their
arguments are polymorphic, we observe that 58.0% (14.2 K) functions are monomorphic. The
remaining 42.0% (10.3 K) have at least one union or polymorphic parameter or return type. Figure 8
shows the distribution of functions against the number of polymorphic arguments. Finally, we
count that 38 out of the 412 packages export only monomorphic functions.

6.1.1 Discussion. A number of lessons can be drawn from the data we have gathered.

NAs. Our data supports making the presence of NAs explicit. Only 2923 (or 2.78%) of arguments
are marked as possibly having NAs, thus the overwhelming majority of types appear to be NA-free.
In practice, programmers check for them and sanitize them if they are present. Consider the binom

package for computing confidence intervals and its binom.profile function. This attached code
snippet highlights a data sanitization pattern: the programmer first binds the vectors into a matrix,
then finds rows where both columns are not NA, extracts non-NA values and stores them into x and
n respectively.
binom.profile <- function(x, n, conf.level=0.9, maxsteps=50, ...) {
xn <- cbind(x = x, n = n)
ok <- !is.na(xn[, 1]) & !is.na(xn[, 2])
x <- xn[ok, "x"]
n <- xn[ok, "n"]
# ...

}

Scalars. The data also suggests that programmers often use scalars, and do dimensionality
checks on their data. In our data 25,064 (or 33.33%) of the arguments are scalar types. While not
completely surprising, this is a rather large number. Consider the hankel.matrix function, it takes
two arguments and checks that n is int, that x is a vector, and also, indirectly, that n is a a scalar
(this comes from the fact that it is used in the guard of a conditional which fails if n is not a scalar).
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hankel.matrix <- function( n, x ) {
### n = a positive integer value for the order of the Hankel matrix
### x = an order 2 * n + 1 vector of numeric values
if ( n != trunc( n ) ) stop( "argument n ix not an integer" )
if ( !is.vector( x ) ) stop( "argument x is not a vector" )
m <- length( x )
if ( m < n ) stop( "length of argument x is less than n" )
# ...

}

Nullables. The number of argument which may be NULL is 5057 (or 4.44%). This is a relatively
small number of occurrences, but it is worth expressing the potential for the presence of NULL as
these would likely inhibit optimizations.

Higher-Order Functions. Typetracer assigns the type class⟨function⟩ to function values. The
number of positions that receive a function (possibly as part of a union) is 1,705, which is just 1.51%
of all the positions for which we infer types. Given the small number of occurrences, it is not worth
complicating the inferred types with a complete signature for these functions.

Structs. While experimenting with various design, we consider adding a struct type to capture
lists with named elements that can be accessed with the $ operators. We ended up discarding those
types as they grew large and were often only representative of the example data being manipulated.
Consider function cv.model, its argument x is observed to be of class⟨aov, lm⟩ or class⟨lm⟩.
Internally, linear models are represented as lists with named elements. The pollution is illustrated
by the lines after the function definition, where the data(sweetpotato) expression loads a sample
data set to test the function. The fields of sweetpotato will be recorded when cv.model is called.
cv.model <- function(x) {
suma2 <- sum(x$residual^2)
gl <- x$df.residual
promedio <- mean(x$fitted.values)
return(sqrt(suma2/gl)*100/promedio)

}

data(sweetpotato)
model<-aov(yield~virus, data=sweetpotato)
cv.model(model)

Objects. While we record classes, our analysis does not deal with method dispatch. R has multiple
disparate object systems called S3, S4, and R5. The class attribute is used by these systems to
dispatch methods. S3 does single dispatch, S4 does multiple dispatch, and R5 supports imperative
objects. The mechanics of S4 dispatch are more complex than for S3, and users can define their own
class hierarchies that we would need to incorporate in our type analysis and contract checking
frameworks. We found limited use of S4 during our analysis. Coming up with a type system that
accounts for all of these factors and consolidates multiple object-orientation frameworks in a single
language design is an interesting problem in and of itself, one we leave for future work.

Matrices. Matrices are instances of the eponymous class, representing 10.71% of all classes
occurring in types. They have a dims attribute indicating dimensions, and while not codified in the
language semantics, many internal functions coerce vectors to matrices automatically. For example,
the rowWeightedMeans function calculates the weighted means of rows. The programmer added a
type check for x.
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rowWeightedMeans <- function(x, w=NULL, rows=NULL, cols=NULL, na.rm=FALSE, ...) {
if (!is.matrix(x)) .Defunct(msg = sprintf("'x' should be a matrix.)
# ...

}

Data Frames. One of the most popular classes in R is the data.frame class, making up 8.15% of
observed classes. Data frames and the derivative tibble and data.table types underpin much of
the idiomatic usage of R. One way to deal with data frames is through the struct type, with a named
field for each column of the data frame, but as mentioned previously structs introduced undue
noise. Further complicating data frames is that many functions built to operate on them operate
in a name-agnostic way. For instance, the tidyverse package ecosystem allows programmers to
pass column names to functions which operate on their data frames. In base R, typical data frame
use is to use string column names to select rows from the frame (unless only a single column
is of interest, wherein the $ syntax is appropriate). In sum, data frames are a popular class of R
values, and have spawned many derivative data types, such as tibbles and data tables. We include a
class⟨data.frame⟩ type to cover most use-cases, and we leave a richer type for future work on a
full fledged object-oriented type system.

6.2 Robustness
We now ask how robust are the inferred types? To measure this, we conducted another large-scale
experiment: for each package in the corpus, using the inferred type signatures as contracts we ran
all of the CRAN reverse dependencies for that package. In total we ran 8,694 unique packages and
recorded 98,105,161 total assertions. Overall, we found that only 1.98% of contract assertions failed.
The limit on number of arguments (we record only 20) accounted for 0.07% failed assertions. We
found that 97.60% of parameter types and 87.70% of function types never failed. The number of
immaculate function types increases to 89.70% if we discount S3 object method dispatch. Overall,
these numbers are promising, and suggest that the type signatures are indeed robust.

We break down the failed assertions by type in Table 4. Accounting for 36.36% of assertion failures
are cases where a dbl[] is passed where a class⟨matrix⟩ is expected. Considering these types, we
might imagine them to be compatible, as a vector is just a one-dimensional matrix. However, not
allowing this coercion was a deliberate design decision, as coercion of this kind is ad hoc at best,
and unfortunately not a practice codified in the language. For example, if the vector has length n,
should it be a 1 × n or n × 1 dimensional matrix?

In a similar vein, another popular failing assertion is checking if a dbl[] has type int[], another
case of commonly performed coercion. We did not include these types of coercions in our type
annotation framework as programmers cannot rely on them, and it is not always the case that the
coercions are safe to perform.

The second row of the table is exemplary of a pattern where vectors are passed when scalars are
expected. In these cases, the functions exhibiting these assertion failures were under-tested, and
can operate just as well on vectors of values. As an example, this failure occurred in functions from
the lubridate package which provides date/time functionality. Many functions, e.g., date_decimal
and make_datetime turn doubles into class⟨POSIXct, POSIXt⟩ (which are dates in R), and they
can easily operate on vectors of doubles, producing lists of dates.
Finally, we point out that assertion failures of, e.g., class⟨data.frame⟩ values being passed

to class⟨data.frame, tbl, tbl_df⟩ arguments and class⟨xml_node⟩ values being passed to an
argument expecting other XML-like classes are related to our simplified take on class types. Our
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Table 4. Top contract failures

Passed Arg Type Occurrences % Total Cumul. %

dbl[] class⟨matrix⟩ 705,036 36.36 36.36
dbl[] dbl 189,800 9.79 46.15
chr class⟨bignum⟩ | raw[] 100,100 5.16 51.31
class⟨simpleError, error, condition⟩ class⟨data.frame⟩ | class⟨matrix⟩ |

class⟨randomForest⟩ | dbl[]
78,197 4.03 55.34

class⟨data.frame⟩ class⟨data.frame, tbl, tbl_df⟩ 58,809 3.03 58.37

class⟨matrix⟩ class⟨timeSeries⟩ 53,482 2.76 61.13
dbl[] int[] 33,350 1.72 62.85
dbl class⟨data.frame⟩ 32261 1.66 64.52
dbl[] class⟨data.frame⟩ 31361 1.62 66.13
class⟨xml_node⟩ class⟨xml_document, xml_node⟩ |

class⟨xml_missing⟩ | class⟨xml_nodeset⟩
30,330 1.56 67.70

type language does not encode user-defined subtyping and coercion, which could help address
these mismatches.

In addition to the number of failed contract checks, we were interested in how many functions
had a parameter where a contract check failed, and overall we found this to be the case in 12.29%
of functions. To subdivide this number, we discounted functions that were performing S3 dispatch,
as they exhibit user-defined polymorphism which we do not handle. Removing those functions, we
see that the proportion of functions with failed contract checks falls to 10.30%. These remaining
functions were under-tested, as calls to these functions represent only 2.73% of recorded calls
during Typetracer’s run on the core corpus to infer types.
Turning our attention now to arguments, we found that only 2.40% of argument types failed.

Table 4 showed the runtime occurrences, but that data alone does not tell the full story, as some
failures may be overrepresented if, e.g., a failing contract assertion was in a loop. We were interested
in knowing for each of the most common violations in Table 4, how many different arguments
had that type, and how many of those exhibited the contract failure in question. Table 5 breaks
down the failed assertions by type, folding away multiple identical failed contract assertions for
the same parameter position. The first row of this table reads: a value of type dbl[] was passed to
15 different function parameters expecting a class⟨matrix⟩, of which there are 1522 in total: 18
(1.18%) of these class⟨matrix⟩-typed parameters were passed dbl[] values.

We see that even though the double vector and matrix issue was wildly prevalent in the dynamic
contract evaluation numbers, the number of actual function argument types that were violated
is very small. The story is similar with the double and integer coercion we mentioned earlier:
it represents many dynamic contract failures, but very few of the int[]-typed arguments have
their contracts violated by dbl[]-typed values. Row six is interesting: we see that rather often
arguments expecting class⟨timeSeries⟩ data are passed class⟨matrix⟩ values. These are all
from the timeSeries package, whose functions often accept matrices and vectors, converting them
to time series in an ad hoc manner. Note that the code coverage of the timeSeries tests, examples,
and vignettes package code is only 58%, which is one possible explanation for these contract failures:
the types that Typetracer generates are only as good as the test code its run on.
Table 6 presents data on the most frequently violated contracts amongst the most frequently

occurring argument types. We selected argument types which were in the 90th percentile of
argument type occurrences, computed the most frequent type signature violations among them,
and reported the most frequently violated contracts together with the type of the value that violated
that contract. The first row of the table reads: 31 function arguments with int[] type are passed
dbl[] values instead, and 624 arguments have int[] type, representing a failure rate of 4.97%.
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Table 5. Results from Table 4, broken down by occurrences of the expected type as a parameter type

# Arg Types
Passed Arg Type Failed Total % Failure

dbl[] class⟨matrix⟩ 18 1522 1.18
dbl[] dbl 66 5865 1.13
chr class⟨bignum⟩ | raw[] 1 3 33.33
class⟨simpleError, error, condition⟩ class⟨data.frame⟩ | class⟨matrix⟩ |

class⟨randomForest⟩ | dbl[]
2 2 100

class⟨data.frame⟩ class⟨data.frame, tbl, tbl_df⟩ 23 196 11.73

class⟨matrix⟩ class⟨timeSeries⟩ 21 39 53.85
dbl[] int[] 31 624 4.97
dbl class⟨data.frame⟩ 2 1025 0.20
dbl[] class⟨data.frame⟩ 6 1025 0.59
class⟨xml_node⟩ class⟨xml_missing⟩ | class⟨xml_nodeset⟩ |

class⟨xml_document, xml_node⟩
1 1 100

Table 6. Highest failure rate among popular argument types, for argument signatures whose frequency is in
the 90th percentile.

Passed Arg Type # Args Failed # Args with Type % Failure

dbl[] int[] 31 624 4.97
dbl int 21 519 4.05
chr[] chr | null 10 256 3.91
^lgl[] lgl[] 8 219 3.65
^lgl lgl[] 5 219 2.28

Table 7. Highest failure rate among popular argument types, for argument signatures whose frequency is in
the 80th percentile.

# Arg Types
Passed Arg Type Failed Total % Failure

class⟨matrix⟩ class⟨timeSeries⟩ 21 39 35.90
dbl[] class⟨timeSeries⟩ 21 39 35.90
class⟨data.frame⟩ class⟨timeSeries⟩ 14 39 35.90
class⟨dtplyr_step_first, dtplyr_step⟩ class⟨data.frame⟩ |

class⟨data.frame, grouped_df, tbl, tbl_df⟩ |
class⟨data.frame, tbl, tbl_df⟩

10 45 22.22

chr raw 6 31 19.35

Had we failed to capture some key usage pattern of R with our type annotation framework,
we would likely see it here. For example, consider Table 7, which was obtained identically to
Table 6 except selecting arguments in the 80th percentile instead. The most frequent argument
type violation pattern in that of class⟨matrix⟩, dbl[], and class⟨data.frame⟩ values passed to
arguments expecting class⟨timeSeries⟩. This occurs in 35.90% of such arguments, and represents
cases where tests did not adequately cover all valid function inputs. Separate from the issue of
testing, we can capture this behavior with user-defined subtyping or coercion, as the data types
which were passed are readily convertible to class⟨timeSeries⟩.

In sum, we believe that this evaluation shows that the type signatures we generate from traces
are quite good. Only 1.98% of contract assertions failed at runtime, representing failures in as
few as 2.40% of argument types. Even though 10.30% of functions had at least one argument type
involved in a failing contract check, these functions are under-tested, representing only 2.73% of
calls observed while inferring types.
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6.2.1 Other Observations. We drew a number of other observations from the contract assertion
failure data.

First, we were curious about how many null-typed values flowed into non-nullable arguments,
and we found that they accounted for 6.46% of contract assertion failures in 141 functions. We
manually inspected some of the offending functions and observed three main patterns.

First, we found that many of these errors occurred in arguments that have a NULL default value.
This would be the case when the programmer only tested the function by passing values to these
null-by-default arguments, and clients of the package make use of the default. As an example, we
observed a contract assertion failure when inner and labels were NULL in the following function:
nlme::nfGroupedData <- function (formula, data = NULL, order.groups = TRUE,
FUN = function(x) max(x, na.rm = TRUE), outer = NULL, inner = NULL,
labels = NULL, units = NULL) {
# ...

}

The other two patterns are for arguments with no default value, where either the call results in
an error (perhaps explicitly handled by the programmer), or results in valid function behavior that
was untested by the original package designer. Here, the first case can be explained by a lack of
testing, and the second case is explained by programmers not fully understanding R’s language
semantics. For example, we observed this kind of error in the following function:
BBmisc::convertIntegers <- function (x) {
if (is.integer(x))

return(x)
if (length(x) == 0L || (is.atomic(x) && all(is.na(x))))

return(as.integer(x))
# ...

}

Here, if x is NULL, the second branch of the conditional will be triggered (as in R, length(NULL) == 0),
and the function will return as.integer(NULL), which curiously returns integer(0), a zero-length
vector of integers (one might expect it to return the integer NA value, or error).

Next, we analyzed how often vectors were passed to arguments expecting scalars. We found that
12.73% of dynamic contract assertion failures were of this type, and these errors were present in
114 functions. Besides an outright error, this kind of contract assertion failure might indicate that a
function was not well-tested, in that it was only ever tested with unit-length vectors being passed
to an argument which is intended to have a vector type. Further, these errors may reveal functions
that were not designed with a vector-typed argument in mind, but can in fact handle vectors of
values (in R, most functions that can accept scalars can also accept vectors). As an example, consider
the function BBmisc::strrepeat, which takes a string and repeats it a specified number of times:
BBmisc::strrepeat <- function (x, n, sep = "") {
paste0(rep.int(x, n), collapse = sep)

}

BBmisc::strrepeat("a", 3) # => "aaa"
BBmisc::strrepeat(c("a", "b"), 3) # => "ababab"

This function was only ever tested with unit-length vectors passed to x, even though technically
it can handle longer vectors, as per the two sample calls above. This could be attributed to poor
quality testing, or misunderstanding language semantics (e.g., misunderstanding the semantics of
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paste0 and rep.int), but we found other instances of type errors where the functions really ought
to have been tested with the offending type, for instance:

combinat::permn <- function (x, fun = NULL, ...) {
if (is.numeric(x) && length(x) == 1 && x > 0 && trunc(x) == x)

x <- seq(x)
# ...

}

As per the documentation, this function is intended to take a vector, and generate all permutations
of elements in that vector. If given a scalar integer n, it will generate all permutations for the list
[1, 2, ...,n]. Interestingly, the function was only tested by passing an integer, and not ever with a
vector (even though, presumably, that is the main utility of the function).

Finally, we were curious to see what patterns of errors occurred in arguments expecting classes.
Overall we found that 81.44% of assertion failures were on arguments which were expecting a class
in some way (51.13% of assertion failures were on monomorphic arguments expecting a class, the
remainder on polymorphic arguments with at least one option being a class).
There are two broad divisions which account for most of the class-related contract asser-

tion failures that are not outright errors. First, we observe a class of errors related to classes
being passed to arguments expecting a different, yet convertible class. For instance, we observed
class⟨data.frame⟩ values being passed to arguments expecting tibbles or data.tables (data frames
have a straightforward conversion to these classes). Second, we observe a class of errors related
more to coercion between simple data types and classes. As an example, consider the aforemen-
tioned assertion failures in the timeSeries package, and as a further example we found many
instances of class⟨matrix⟩, class⟨data.frame⟩, and vectors being passed to arguments expect-
ing class⟨array⟩, a generalization of matrices.

6.2.2 Kaggle. To further validate our inferred types, we repeated the experiment discussed in this
section on end-user R code found on the Kaggle competition website.

By-and-large, this evaluation did not reveal any new insights, with the contract assertion failure
patterns being repeated from the reverse dependencies. Overall, we observed that 2.14% of all
contract assertions failed while running Kaggle code. If we remove assertion failures related to our
simplifying assumption that function types will not have more than 20 arguments, that number
drops to a mere 0.42%. In all, 15.98% functions had at least one contract failure. There were 19,038,496
assertions in total, on 970 functions.

Table 8. Top contract failures in Kaggle kernels

Passed Arg Type Occurrences % Total Cumulative %

class⟨data.table, data.frame⟩ class⟨matrix⟩ 20002 28.15 28.15
class⟨factor⟩ ^chr[] 18344 25.81 53.96
class⟨factor⟩ chr[] 7519 10.58 64.54
chr[] list⟨int[]⟩ | ... |

list⟨class⟨formula, quosure⟩⟩
5385 7.58 72.12

class⟨ixforeach, iter⟩ class⟨dataframeiter, iter⟩ | ... |
class⟨iforeach, iter⟩

4139 5.82 77.94

To mirror our analysis of contract assertions on the reverse dependencies of our corpus, we
show in Table 8 the most frequently failing contract in Kaggle. While we don’t see many overlap-
ping entries per se, the assertions exhibit similar patterns. For instance, data tables (which have
class⟨data.table, data.frame⟩) are often passed to arguments expecting a class⟨matrix⟩. Data
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Table 9. Highest failure rate among popular argument types in Kaggle, for argument signatures whose
frequency is in the 90th percentile.

Passed Arg Type # Args Failed # Args with Type % Failure

chr[] chr 12 304 0.04
class⟨factor⟩ chr[] 7 199 0.04
dbl[] chr[] 6 199 0.03
^chr[] chr[] 4 199 0.02
int chr 5 304 0.02

tables are essentially serve the same purpose as data frames and tibbles. As it happens, data tables
can be coerced to matrices if their elements are unityped, and programmers will often interchange
the two, as is the case here. One function producing many of these errors is the following:

class::knn <- function (train, test, cl, k = 1, l = 0, prob = FALSE, use.all = TRUE) {
train <- as.matrix(train)
test <- as.matrix(test)
...

}

We see that class::knn coerces its first two arguments to matrices. On the topic of coercion, rows
two and three of Table are interesting as they depict factors being passed to arguments expecting
character vectors. class⟨factor⟩ typed values are known as factors in R, and they are stored as a
vector of integer values corresponding to a set of character values, and their purpose is to allow
for R to quickly deal with categorized data. Factors can be readily converted to characters when
needed, as evidenced by these assertion failures.

Another interesting entry in Table 8 is the fifth row, where a class⟨ixforeach, iter⟩ is being
passed to an argument expecting a long union of classes, each of the form class⟨_, iter⟩. This
is likely an instance where the user defined their own class, ixforeach, and wanted to use the
iterators package (the user called iterator::iter with a class⟨ixforeach⟩, and it gained the
class iter on return). As mentioned, accounting for object-orientation in the type system is beyond
the scope of this work, and such an inclusion would allow us to better type situations like this.

Table 9 mirrors Table 6 in showing contract violations on the most frequently occurring argument
types. Here, our manual analysis has revealed similar failure patterns. In the case of vectors being
passed to scalars, we find functions which can take vectors but were only tested with scalars (e.g.,
stringr::str_to_upper which converts a vector of characters to upper case, and dplyr::anti_join,
which can join by a vector of column names but was only ever tested with a scalar). We also see
possibly-NA character vectors being passed to NA-free character vectors. These assertion failures
arise from a lack of testing: the offending functions are str_trim, str_sub, and str_replace_all

from the stringr package. These functions are actually wrappers for other functions which have
the correct argument type (^chr[]).

6.2.3 Discussion. Overall, the analysis discussed in this section has revealed two broad categories
of contract assertion failures: those related to coercion, and those related to a class hierarchy. Our
type system does not account for coercion as coercion in R is ad hoc at best, and it is implemented on
a function-by-function basis, even in the core R packages. As for errors related to a class hierarchy,
we aim to tackle this in future work, as designing a full fledged object-oriented type system for a
language like R is outside of the scope of this work.
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6.3 Usefulness of the Type Checking Framework
There are a number of ways to check the types of function parameters in R. The default and most
common way8 is to use the stopifnot function from the R base package. It takes a number of R
expressions which should all evaluate to TRUE, otherwise a runtime exception is thrown with a
message quoting the failed expression. For example, the following code checks whether a given
parameter x is a scalar string:

stopifnot(is.character(x), length(x) == 1L, !is.na(x))

Beyond stopifnot, there are 4 packages in CRAN9 that focus on runtime assertions: assertive,
ensurer, assertr, and assertthat. assertive and ensurer have not been updated since 2016 and 2015
respectively, and assertr is used by only 2 other packages and currently focuses on checking
properties of data frames. Only assertthat is maintained and used (with 211 reverse dependencies).
The advantage of assertthat over the R default is that it provides much better error messages.

One way to assess the usefulness of our type checking framework is to see how many existing
user-defined type checks can be replaced by ContractR. To measure this, we extracted all calls to
stopifnot and assertthat assertions, and checked which among them could either be completely
replaced by ContractR, or at least partially simplified by removing a portion of an assertion
expression. Partial simplification is useful, as a common pattern in this ad hoc type checking is that
the first part of the assertion checks the value’s type, while the rest checks more detailed properties.
In the example above, the whole expression could be replaced by a chr type check.

Out of the 412 packages, 153 use runtime assertions. Altogether, there are 1,995 assertions in 1,264
functions. Among these, ContractR can replace 1,005 (50.4%) assertion calls across 114 packages and
688 functions. Furthermore, an additional 1,223 (61.3%) asserts in 125 packages and 859 functions
could have been simplified.
Checking the type of function parameters is not something that is seen often in the R code. In

the whole of CRAN, there are only 32.3K asserts in 15.9K functions defined in 2.4K packages. One
may speculate that this is the case due to the verbosity and inconvenience of the existing assertion
tools. Our system can infer type annotations for existing functions automatically. This can remove
or partially remove over 61.3% of existing assertions.

7 DISCUSSION
Throughout this paper, we employed the following strategy to consolidate types: We collected all
of the traces observed for a function, and combined them into a single function type, where the
type for each argument position was made up of a union of all the observed types at that position.
We then simplified these unions using the rules presented in Section 4. We call this an arrow of
unions. We will elaborate on some of the design decisions that went into developing this method.
Arguably, the primary issue with the arrow of unions strategy is that of a loss of precision,

as relationships between argument and return types can be obscured. For example, consider a
function with two unique call traces, ⟨chr⟩ → chr and ⟨dbl⟩ → dbl. The arrow of union strategy
results in a combined type of ⟨chr | dbl⟩ → chr | dbl for the function, which hides the (potential)
relationship between the argument and return type.

One solution to this is simply to convert each call trace into an arrow type, and generate a union
of arrow types as the overall type for the function, dubbed the basic union of arrows strategy. This
would lead to the type ⟨chr⟩ → chr | ⟨dbl⟩ → dbl for the aforementioned function. Unfortunately,
this leads to a significant blow-up in the size of types, and makes many types unreadable due to the

887.6% of all runtime checks in the whole of CRAN
9Packages are available on the CRAN website: https://cran.r-project.org/web/packages/
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myriad ways in which we combine the primitive types, as recall that, e.g., scalars and vectors are not
the same type, and we see many types of the form ⟨chr⟩ → dbl | ⟨chr[]⟩ → dbl | ⟨ ĉhr[]⟩ → dbl.
When comparing this consolidation strategy against the one employed throughout the paper, we
find that the types using this strategy are much larger, with 14,057 (55.06%) functions having at
least one top-level union. We observed 93,229 independent arrow types using this strategy.
Another option is to employ a hybrid approach, wherein we perform the union of arrow types

after grouping them together by return type (to further simplify, we also combine some primitive
return types together, such as dbl and dbl[]). While this has the advantage of reducing most of the
blow-up of the previous approach, it suffers particularly when functions return classes, as our type
system does not allow us to effectively consolidate class types. This strategy would reduce arrow
types ⟨chr⟩ → dbl, ⟨chr[]⟩ → dbl, and ⟨ ĉhr[]⟩ → dbl into the function type ⟨ ĉhr[]⟩ → dbl.
Comparing again to the strategy employed throughout the paper, we find 5,317 (20.82%) functions
to have a union of arrows, and we found 38,650 independent arrow types. We additionally find that
38,650 (26.14%) of arrow types have at least one polymorphic argument.
These findings are summarized in Figure 9, which shows a breakdown of the number of top-

level alternatives in the function types obtained with both of these strategies: The term łtop-level
alternativež signifies an arrow type in the union of arrows, e.g., ⟨chr⟩ → chr and ⟨dbl⟩ → dbl are
top-level alternatives in the type ⟨chr⟩ → chr | ⟨dbl⟩ → dbl. We see that the hybrid approach
greatly increases the number of functions with no union of arrows at the function level, where 92%
of functions only have one or two top-level alternatives. Also, nearly 5% of function types obtained
with the basic union of arrows strategy have over 9 top-level alternatives.
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Fig. 9. Comparison of top-level function type counts across different merge strategies.

To connect this discussion with actual R types, we show what the types of the correlation

function from the agricolaewould be when using each of these strategies. agricolae::correlation
obtains the coefficients of correlation and p-value between all variables of some input data table,
using a method of the user’s choosing. It returns the correlation matrix and the p-value (a double)
together in a list. We refer the reader to Figure 10, where we see that the hybrid approach produces
a much smaller type, with only two arrow types in the top-level union. Moreover, we see that no
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real precision is lost when further reducing the function type to a pure arrow of unions, as the two
top-level alternatives in the type obtained with the hybrid approach are not very informative.

Table 10. Types of agricolae::correlation with different type merge strategies.

Merge Strategy Function Type
Union of Arrows ⟨dbl[], dbl[], chr, chr⟩ → null |

⟨int[], dbl[], chr, chr⟩ → null |
⟨class⟨data.frame⟩, null, chr[], chr⟩ → list⟨class⟨matrix⟩ | dbl⟩ |
⟨class⟨data.frame⟩, null, chr, chr⟩ → list⟨class⟨matrix⟩ | dbl⟩ |
⟨dbl[], class⟨data.frame⟩, chr[], chr⟩ → list⟨class⟨matrix⟩ | dbl⟩ |
⟨dbl[], class⟨data.frame⟩, chr, chr⟩ → list⟨class⟨matrix⟩ | dbl⟩

Hybrid ⟨dbl[], dbl[], chr, chr⟩ → null |
⟨class⟨data.frame⟩ | dbl[], ? class⟨data.frame⟩, chr[], chr⟩ → list⟨class⟨matrix⟩ | dbl⟩

Arrow of Unions ⟨class⟨data.frame⟩ | dbl[], ? dbl[] | class⟨data.frame⟩, chr[], chr⟩ → ? list⟨class⟨matrix⟩ | dbl⟩

In contrast, there are real cases where a meaningful loss of precision occurs. Consider instead
the rename function from the dplyr package, with types shown in Figure 11. This function takes a
data frame and renames selected columns. We see that the types are the same with both the union
of arrows and hybrid approach (with only three unique function signatures observed), and can
glean from these types that dplyr::rename produces a data frame of the same class as the input.
This information is lost in the arrow-of-unions merge strategy. That said, once the type language is
extend with proper user-defined type hierarchies, the arrow of unions type will be much smaller
and more informative (as data frames, grouped tibbles, and tibbles are all related types).

Table 11. Types of dplyr::rename with different type merge strategies.

Merge Strategy Function Type
Union of Arrows ⟨class⟨data.frame⟩, ...⟩ → class⟨data.frame⟩ |

⟨class⟨data.frame, grouped_df, tbl, tbl_df⟩, ...⟩ → class⟨data.frame, grouped_df, tbl, tbl_df⟩ |
⟨class⟨data.frame, tbl, tbl_df⟩, ...⟩ → class⟨data.frame, tbl, tbl_df⟩

Hybrid ⟨class⟨data.frame⟩, ...⟩ → class⟨data.frame⟩ |
⟨class⟨data.frame, grouped_df, tbl, tbl_df⟩, ...⟩ → class⟨data.frame, grouped_df, tbl, tbl_df⟩ |
⟨class⟨data.frame, tbl, tbl_df⟩, ...⟩ → class⟨data.frame, tbl, tbl_df⟩

Arrow of Unions ⟨class⟨data.frame⟩ | class⟨data.frame, tbl, tbl_df⟩ | class⟨data.frame, grouped_df, tbl, tbl_df⟩, ...⟩ →
class⟨data.frame⟩ | class⟨data.frame, tbl, tbl_df⟩ | class⟨data.frame, grouped_df, tbl, tbl_df⟩

Finally, we want to briefly discuss types for base package functions (in R, functions like +, -, and
vector access are part of the base package). These functions coerce mismatched arguments in an ad
hoc manner, with no real defined semantics. Further, functions like + often act on values based on
their type (according to typeof), and ignore the class, unless a package extended + to dispatch on
the class. This leads to incredibly large inferred signatures for these functions. Even after counting
out traces related to S3 and S4 dispatch, the type of + using the hybrid approach has 29 top-level
alternatives, 22 of which have a class-typed argument. We don’t believe this type to be particularly
useful to a programmer, but a compiler might find it quite useful, as it can determine the type of
the return value of a function given the types of its arguments.

8 CONCLUSION
Retrofitting a type system for the interactive and exploratory programming style of R is hard:
The language is poorly specified and builds upon an eclectic mix of features such as laziness,
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reflection, dynamic evaluation and ad-hoc object systems. Our intent is to eventually propose a
type system for inclusion in the language, but we are aware that for any changes to be accepted by
the community, they must have clear benefits without endangering backwards compatibility. As
a step towards this, we focus on a simpler problem: instead of an entire type system, we limited
the scope of our investigation to ascribing types to function signatures. To this end, we designed a
simple type language which found a compromise between simplicity and usefulness by focusing on
the most widely used features of R. We presented Typetracer, a tool for inferring types for function
signatures from runnable code, and ContractR, an easy-to-use package for R which allows users to
specify function type signatures and have function arguments checked for compliance at runtime.
We evaluated our design by running Typetracer on a corpus of 412 of the most widely used

R packages on CRAN, inferring signatures for exported functions, and testing those inferred
signatures on the 8,694 reverse dependencies of the corpus. Overall, we found that our simple
design fits quite well with the existing language: Nearly 80% of functions are either monomorphic
or have only one single polymorphic argument. When we tested the types inferred by Typetracer
during our evaluation, we found that only 1.98% of contract assertions failed. Furthermore, we
found that our type language and contract checking framework would be useful to programmers,
eliminate or otherwise simplify 61.3% of existing type checks and assertions in user code. In sum,
we believe that our simple type language design is a solid foundation for the eventual type system
for R.
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Filip Křikava, Heather Miller and Jan Vitek published in Proceedings of the ACM Program-
ming Languages 3, OOPSLA, Article 163, October 2019 [Křikava et al., 2019].
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The Scala programming language offers two distinctive language features implicit parameters and implicit
conversions, often referred together as implicits. Announced without fanfare in 2004, implicits have quickly
grown to become a widely and pervasively used feature of the language. They provide a way to reduce the
boilerplate code in Scala programs. They are also used to implement certain language features without having
to modify the compiler. We report on a large-scale study of the use of implicits in the wild. For this, we
analyzed 7,280 Scala projects hosted on GitHub, spanning over 8.1M call sites involving implicits and 370.7K
implicit declarations across 18.7M lines of Scala code.
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1 INTRODUCTION
ł...experienced users claim that code bases are train wrecks because of overzealous use of implicits.ž śM. Odersky, 2017

ł...can impair readability or introduce surprising behavior, because of a subtle chain of inference.ž śA. Turon, 2017

łAny sufficiently advanced technology is indistinguishable from magic.ž śA.C. Clarke, 1962

Programming language designers strive to find ways for their users to express programming tasks
in ways that are both concise and readable. One approach to reduce boilerplate code is to lean on
the compiler and its knowledge and understanding of the program to fill in the łboring partsž of
the code. The idea of having the compiler automatically provide missing arguments to a function
call was first explored by Lewis et al. [2000] in Haskell and later popularized by Scala as implicit
parameters. Implicit conversions are related, as they rely on the compiler to automatically adapt data
structures in order to avoid cumbersome explicit calls to constructors. For example, consider the
following code snippet: "Just like magic!".enEspanol Without additional context one would expect
the code not to compile as the String class does not have a method enEspanol. In Scala, if the compiler
is able to find a method to convert a string object to an instance of a class that has the required
method (which resolves the type error), that conversion will be inserted silently by the compiler
and, at runtime, the method will be invoked to return a value, perhaps "Como por arte de magia!".

Implicit parameters and conversions provide ways to (1) extend existing software [Lämmel and
Ostermann 2006] and implement language features outside of the compiler [Miller et al. 2013],
and (2) allow end-users to write code with less boilerplate [Haoyi 2016]. They offload the task
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Fig. 1. Implicits usage across our corpus

of selecting and passing arguments to functions and converting between types to the compiler.
For example, the enEspanol method from above uses an implicit parameter to get a reference to a
service that can do the translation: def enEspanol(implicit ts:Translator):String. Calling a function
that has implicit arguments results in the omitted arguments being filled from the context of the
call based on their types. Similarly, with an implicit conversion in scope, one can seamlessly pass
around types that would have to be otherwise converted by the programmer.

The Good: A Powerful Tool. It is uncontroversial to assert that implicits changed how Scala is used.
Implicits gave rise to new coding idioms and patterns, such as type classes [Oliveira et al. 2010].
They are one of a few key features which enable embedding Domain-Specific Languages (DSLs) in
Scala. They can be used to establish or pass context (e.g., implicit reuse of the same threadpool in
some scope), or for dependency injection. Implicits have even been used for computing new types
and proving relationships between them [Miller et al. 2014; Sabin 2019]. The Scala community
adopted implicits enthusiastically and uses them to solve a host of problems. Some solutions gained
popularity and become part of the unofficial programming lexicon. As usage grew, the community
endeavored to document and teach these idioms and patterns by means of blog posts [Haoyi 2016],
talks [Odersky 2017] and the official documentation [Suereth 2013]. While these idioms are believed
to be in widespread use, there is no hard data on their adoption. How widespread is this language
feature? And what do people do with implicits? Much of our knowledge is folklore based on a
handful of popular libraries and discussion on various shared forums.
Our goal is to document, for language designers and software engineers, how this feature is

really used in the wild, using a large-scale corpus of real-world programs. We provide data on how
they are used in popular projects engineered by expert programmers as well as in projects that are
likely more representative of how the majority of developers use the language. This paper is both a
retrospective on the result of introducing this feature into the wild, as well as a means to inform
designers of future language of how people use and misuse implicits.

The Bad: Performance. While powerful, implicits aren’t without flaws. Implicits have been ob-
served to affect compile-time performance; sometimes significantly. For example, a popular Scala
project reported a three order-of-magnitude speed-up when developers realized that an implicit
conversion was silently converting Scala collections to Java collections only to perform a single
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case class Card(n:Int, suit:String) {

def isInDeck(implicit deck: List[Card]) =

deck contains this

}

implicit def intToCard(n:Int) = Card(n, "club")

implicit val deck = List(Card(1, "club"))

1.isInDeck

1.isInDeck

intToCard(1).isInDeck deck.apply(1).isInDeck

deck.apply(1).isInDeck(deck)

NoSuchElementException

intToCard(1).isInDeck(deck)

1 2

Fig. 2. Instead of injecting a conversion to intToCard (1), the compiler injects deck.apply (2) since List[A]

extends (transitively) Function[Int,A]. An exception is thrown because the deck contains only one element
(http://scalapuzzlers.com/)

operation that should have been done on the original object.1 Another project reported a 56 line
file taking 5 seconds to compile because of implicit resolution. Changing one line of code to remove
an implicits, improved compile time to a tenth of second [Torreborre 2017]. Meanwhile, faster com-
pilation is the most wished-for improvement for future releases of Scala [Lightbend 2018]. Could
implicit resolution be a significant factor affecting compilation times across the Scala ecosystem?

The Ugly: Readability. Anecdotally, there are signs that the design of implicits can lead to confus-
ing scenarios or difficult-to-understand code. Figure 2 illustrates how understanding implicit-heavy
code can place an unreasonable burden on programmers2. In this example, the derivation chosen by
the compiler leads to an error which requires understanding multiple levels of the type hierarchy
of the List class. Such readability issues have even lead the Scala creators to reconsider the design
of Scala’s API-generation tool, Scaladoc. This was due to community backlash [Marshall 2009]
following the introduction of the Scala 2.8 Collections library [Odersky and Moors 2009]Ða design
which made heavy use of implicits in an effort to reduce code duplication. The design caused
a proliferation of complex method signatures across common data types throughout the Scala
standard library, such as the following implementation of the map method which was displayed by
Scaladoc as: def map[B,That](f:A=>B)(implicit bf:CanBuildFrom[Repr,B,That]):That. To remedy this,
Scaladoc was updated with use-cases,3 a feature designed to allow library authors to manually
override method signatures with simpler ones in the interest of hiding complex type signatures
often further complicated by implicits. The same map signature thus appears as follows in Scaladoc
after simplification with a @usecase annotation: def map[B](f: (A) => B): List[B]

ThisWork. To understand the use of implicits across the Scala ecosystem, we have built an open
source and reusable pipeline to automate the analysis of large Scala code bases, compute statistics
and visualize results. We acquired and processed a corpus of 7,280 projects from GitHub with over
8.1M implicit call sites and more than 370.7K implicit declarations across 18.7M non-empty lines of
Scala code. We observed over 98.2% projects using implicits, and 78.2% projects declaring implicits.
With close to 27.2% of call sites requiring implicit resolution, implicits are the most used feature of
Scala. Figure 1 summarizes the usage of implicits in our corpus. Our results document which idioms
and patterns are popular and in application, library and tests. We provide data on the compilation
time cost of implicits and the complexity of implicits. Our artifact is available at:

https://doi.org/10.5281/zenodo.3369436
1Documented in https://github.com/mesosphere/marathon/commit/fbf7f29468bda2ec29b7fbf80b6864f46a825b7a.
2For example, an entire book is devoted to so-called łpuzzlers,ž or łenigmatic Scala code that behave highly contrary to
expectationsž which łwill entertain and enlighten even the most accomplished developerž [Phillips and Serifovic 2014]
3cf. https://docs.scala-lang.org/overviews/scaladoc/for-library-authors.html
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2 AN OVERVIEW OF SCALA IMPLICITS
Scala is a statically typed language that bridges the gap between object-oriented and functional
programming. Implicits were included in the first release in 2004. In that version implicit conversions
were used to solve the late extension problem; namely, given a class C and a trait T , how to have C
extend T without touching or recompiling C . Conversions add a wrapper when a member of T is
requested from an instance of C . Scala 2.0 added implicit parameters in 2006.

2.1 Implicit Conversions
Implicit conversion provides a way to use a type where another type is required without resorting to
an explicit conversion. They are applied when an expression does not conform to the type expected
by its context or when a called method is not defined on the receiver type. A conversion is defined
with an implicit function or class, or an implicit value of a function type (e.g., implicit val x:A=>B).

Implicit conversions are not specific to Scala. They also appear in languages such as C++ or C#.
The difference is that conversions are typically defined in the class participating in the conversion,
while in Scala the implicit conversions can be defined in types unrelated to the conversion types.
This allows programmers to selectively import conversions. For example it is possible to define an
implicit conversion from a String to an Int:

implicit def string2int(a: String): Int = Integer.parseInt(a)

val x: Int = "2"

Implicit conversions are essential to provide seamless interoperability with Java which was impor-
tant in the early days of Scala. Conversions are also one of the main building blocks for constructing
embedded Domain-Specific Languages (DSLs). For example, the following code snippet adds some
simple time unit arithmetic that feels natural in the language.

case class Duration(time: Long, unit: TimeUnit) {

def +(o: Duration) = Duration(time + unit.convert(o.time, o.unit), unit)

}

implicit class Int2Duration(that: Int) {

def seconds = new Duration(that, SECONDS); def minutes = new Duration(that, MINUTES)

}

5.seconds + 2.minutes //Duration(125L, SECONDS )

2.2 Implicit Parameters
A method or a constructor can define implicit parameters. The arguments to these parameters will
be filled in by the compiler at every call site with the most suitable values in the calling context.
For example, a function def sub(x:Int)(implicit y:Int)=x-y with implicit parameter y can be called
with sub(1) provided that the compiler can find an implicit such as implicit val n=1. The compiler
looks for implicits in the current lexical scope and if there are no eligible identifiers then it searches
the implicit scope of the implicit parameter’s type (associated companion objects4 and packages).
If a value is found, the compiler injects it into the argument list of the call. If multiple values are
found and none of them is more specific than the others, an ambiguity compilation error is thrown.
An error is also raised when no eligible candidate is found. Importantly, besides having the correct
type, an implicit value from a lexical scope must be accessible using its simple name (without
selecting from another value using dotted syntax). This means that normal rules for name binding
including shadowing apply. Implicit values (val), variables (var), objects (object) and functions (def)
without explicit parameters can all be used to fill implicit parameters. An implicit parameter of
a function type A => B can be used as an implicit conversion in the method body. For example

4A companion object is a singleton associated with a class used to define static fields and methods.
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def get[T, C](xs: C, n: Int)(implicit conv: C => Seq[T]):T = xs(n) can be called with any type C, as
long as there is implicit conversion in scope that can convert C into a sequence.

2.3 Idioms and Patterns
Over time, programmers have put implicits to many uses. This section describes the most widely
discussed implicit idioms. This list is based on our understanding of the state of practice. It is not
expected to be exhaustive or definitive.

2.3.1 Late Trait Implementation. This idiom is a solution for the late extension problem, and was
the original motivation for adding implicits to Scala in the first place. To add a new trait to an
existing class, one can define a one-parameter conversion that returns an instance of the trait.

implicit def call2Run(x: Callable[_]): Runnable = new Runnable { def run = x.call }

This snippet adds the Runnable interface to any any type that implements Callable. Conversions can
also take implicit parameters, they are then referred to as conditional conversions.

implicit def call2Future[T](x: Callable[T])(implicit ctx: ExecutionContext): Future[T]

For example, the above defines a late trait implementation that is only applicable if there exists an
execution context in scope.

2.3.2 Extension Methods. Extension methods allow developers to add methods to existing classes.
They are defined with an implicit def that converts objects to a new class that contains the desired
methods. Scala 2.10 added syntactic sugar to combine conversion and class declaration in the
implicit class construct. The conversion takes a single non-implicit parameter as shown in the
following snippet where zip is added to any Callable.

implicit class XtensionCallable[T](x: Callable[T]) {

def zip[U](y: Callable[U]): Callable[(T, U)] = () => (x.call, y.call)

}

val c1 = () => 1; val c2 = () => true; val r = c1 zip c2 // r: Callable[(Int, Boolean)]

An extension method is convenient as it allows to write c1 zip c2 instead of zip(c1, c2). It is an
important feature for embedded DSLs. On the other hand, unlike static methods, it is harder to
read. Without knowing the complete code base it is difficult to know where a calling method
is defined and how the definition got into the current scope. Extension methods can also be
conditional. For example, we can add a def schedule(implicit c: ExecutionContext) method that will
run the callable on the implicitly provided execution context if it is present. If there is none,
the developer will get a compile-time error łcannot find an implicit ExecutionContext ... import
scala.concurrent.ExecutionContext.global.ž. This is because the ExecutionContext is annotated with
@implicitNotFound, a Scala annotation allowing one to customize the compile-time error message
that should be outputted in the case no implicit value of the annotated type is available.

2.3.3 Type Classes. Oliveira et al. [2010] demonstrated how to use implicit parameters to implement
type classes [Wadler and Blott 1989]. Fig. 3a defines a trait Show that abstracts over pretty-printing
class instances. The function show can be called on instances T, for which there is an implicit value of
type Show[T]. This allows us to retrospectively add support to classes we cannot modify. For example,
given a class Shape(sides: Int) from a 3rd party library, we can define the implicit value ShapeShow to
add pretty printing (Fig. 3b). This is an implicit object that extends Show and implements show. Thus
when show is called with an explicit argument of type Shape, for example show(Shape(5)), the compiler
adds the implicit ShapeShow as the implicit argument ev, resulting in show(Shape(5))(shapeShow).
Since functions can be used as implicit parameters, we can generalize this example and create an
implicit allowing us to show a sequence of showable instances. In the following snippet, listShow is
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trait Show[T] {

def show(x: T): String

}

def show[T](x: T)(implicit ev: Show[T]) =

ev.show(x)

(a)

case class Shape(n: Int)

implicit object shapeShow extends Show[Shape] {

def show(x: Shape) = x.n match {

case 3 => "a triangle"; case 4 => "a square"

case _ => "a shape with $n sides" }

}

(b)
implicit def listShow[T](implicit ev: Show[T]) = new Show[List[T]] {

def show(x: List[T]) = x.map(x => ev.show(x)).mkString("a list of [", ", ", "]")

}

(c)
Fig. 3. Type classes

a generic type class instance that combined with an instance of type Show[T] returns a type class
instance of type Show[List[T]] (Fig. 3c). Thus, a call to show(List(Shape(3), Shape(4))) is transformed
to show(List(Shape(3), Shape(4)))(listShow[Shape](shapeShow)), with two levels of implicits inserted.
This implicit type class derivation is what makes type classes very powerful. The mechanism can
be further generalized using implicit macros to define a default implementation for type class
instances that do not provide their own specific ones [Miller et al. 2014; Sabin 2019].

2.3.4 Extension Syntax Methods. Type classes define operations on types, when combined with
extension methods it is possible to bring these operations into the corresponding model types. We
can extend the Show[T] type class and define an extension method

implicit class ShowOps[T](x: T)(implicit s: Show[T]) { def show = s.show(x) }

allowing one to write directly Shape(3).show instead of show(Shape(3)). The ShowOps[T] is a conditional
conversion that is only applied if there is an instance of the Show[T] in scope. This allows library
designers to use type class hierarchies instead of the regular sub-typing. The name extension syntax
methods comes from the fact that developers often lump these methods into a package called syntax.

2.3.5 Type Proofs. Implicit type parameters can used to enforce API rules at a compile time by
encoding them in types of implicit parameters. For example, flatten is a method of List[A] such
that given an instance xs: List[List[B]], xs.flatten returns List[B] concatenating the nested lists
into a single one. This is done with an implicit parameter:

class List[A] { def flatten[B](implicit ev: A => List[B]): List[B] }

Here, A => List[B] is an implicit conversion from A to List[B]. It can also be viewed as a predicate
that must be satisfied at compile time in order for this method to be called. We can define an
implicit function implicit def isEq[A]: A=>A = new =>[A,A]{} that will act as generator of proofs such
that A in A => List[B] is indeed List[B]. Therefore, a call List(List(1)).flatten will be expanded to
List(List(1)).flatten(isEq[List[Int]]) since A is a List while List(1).flatten will throw a compile
time exception: łNo implicit view available from Int => List[B]ž.

2.3.6 Contexts. Implicit parameters can reduce the boilerplate of threading a context parameter
through a sequence of calls. For example, the methods in scala.concurrent, the concurrency library
in Scala’s standard library, all need an ExecutionContext (e.g., a thread pool or event loop) to execute

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 163. Publication date: October 2019. 79



Scala Implicits Are Everywhere 163:7

their tasks upon. The following code shows the difference between explicit and implicit contexts.
val ctx = ExecutionContext.global

val f1 = Future(1)(ctx)

val f2 = Future(2)(ctx)

val r = f1.flatMap(r1 =>

f2.map(r2 => r1 + r2)(ctx)

)(ctx)

With explicit context

implicit val ctx = ExecutionContext.global

val f1 = Future(1)

val f2 = Future(2)

val r = for(r1 <- f1; r2 <- f2) yield r1 + r2

With implicit context

On the left, an explicit context is passed around on every call to a method on Future, while on the
right much of the clutter is gone thanks to implicits. This de-cluttering hides the parameters and
makes calls to map and flatMap more concise. The idiom consists of the declaration of an implicit
context (usually as an implicit val), and the declaration of the functions that handle it.

2.3.7 Anti-patterns: Conversions. A widely discussed anti-pattern is the conversions between types
in unrelated parts of the type hierarchy. The perceived danger is that any type can be automatically
coerced to a random type unexpectedly; e.g., imagine a conversion from Any to Int introduced into
the root of a big project. One could imagine such a conversion wreaking havoc in surprising places
in a code base and being difficult to track down. Another anti-pattern is conversions that go both
ways [Odersky 2017]. Since conversions are not visible, it is difficult to reason about types at a given
call site as some unexpected conversion could have happened. An example is the, now deprecated,
Java collection conversion. In an earlier iteration, Scala defined implicit conversions between Java
collections and its own, such as:

implicit def asJavaCollection[A](it: Iterable[A]): java.util.Collection[A]

implicit def collectionAsScalaIterable[A](i: java.util.Collection[A]): Iterable[A]

As they were often imported together using a wildcard import collection.JavaConversions._, it was
easy to mistakenly invoke a Javamethod on a Scala collection and vice-versa silently converting the
collections from one to another. Furthermore, in this case, these conversions also change semantics
as the notion of equality in Java collections is different from Scala collections (reference vs. element
equality). Since implicit conversions can introduce some pitfalls, the compiler issues a warning
when compiling an implicit conversion definition. It can be suppressed by an import (or a compiler
flag) which is usually automatically done by an IDE and thus diminishing the utility of these
warnings.

2.4 Complexity
Implicits help programmers by hiding the łboring partsž of programming tasks, the plumbing
that does not require skill or attention. The problem is that, as the above idioms demonstrate,
implicits are also used for subtle tasks. Their benefits can turn into drawbacks. One way to measure
the potential complexity of implicits is to look at the work done by the compiler. When implicits
work, programmers need not notice their presence. But when an error occurs, the programmer
suddenly has to understand the code added by scalac. For example, a comparison of two tuples
(0,1)<(1,2) gets expanded to orderingToOrdered((0,1))(Tuple2(Int, Int))<(1,2). The compiler injects
two additional calls (orderingToOrdered implicit conversion, Tuple2 type class) with two implicit
arguments (Int). The question is how much of this filling there is.

Tooling can help navigate the complexity added by implicits. The plugin for IntelliJ IDEA has a
feature that can show implicit hints, including the implicit resolution in the code editor. This effec-
tively reveals the injected code making it an indispensable tool for debugging. However, turning the
implicit hints on severely hinders the editor performance, creating a significant lag when working
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with implicits-heavy files. The second problem with this is that the IntelliJ compiler is not the same
as scalac, and often implicit resolution disagrees between the two compiler implementations.
Another common problem that hinders understanding is related to implicit resolution. Eligible

implicits for both conversions and parameters are searched in two different scopes. The search
starts in the lexical scope that includes local names, enclosing members and imported members and
continues in the implicit scope that consists of all companion objects associated with the type of
the implicit parameter. The advantage of the implicit scope is that it does not need to be explicitly
imported. This prevents errors caused by missing imports for which, due to the lack of global
implicit coherence, the compiler cannot give a better error message than a type mismatch, łmember
not foundž or łcould not find implicit valuež. Implicit scope has a lower priority allowing users to
override defaults by an explicitly importing implicit definition into the lexical scope. A consequence
of this is that an import statement can change program semantics. For example, in the code bellow
contains two late trait implementations of a trait T for a class A: C1 defined in implicit scope of the
class A, and C2 defined in an unrelated object O:

trait T { def f: Int }

class A; object A { implicit class C1(a: A) extends T { def f = 1 } }

object O { implicit class C2(a: A) extends T { def f = 2 } }

new A().f

At the call to f, the compiler will use the C1 conversion resolved from the implicit scope so the
result will be 1. However, if later there is an import O._ before the call site, the expression will return
2. The import will bring C2 into the lexical scope prioritizing C2 over C1.
Further, implicits defined in the lexical scope follow the name binding rules and thus can be

shadowed by explicit local definitions. For instance, adding any definition with a name C2 (e.g.,
val C2 = null) into the scope before the call to f will result in returning again 1, since the imported
O.C2 implicit will be shadowed by this local definition. In the case C1 did not exits, the compiler will
simply emit łvalue f is not a member of Až error. To avoid this, library authors try to obfuscate the
implicits names which in turn affects the ergonomics. A notable example is in the Scala standard
library where the implicit providing a proof that two types are in a sub-type relationship is named
$conforms in order to prevent a potential shadowing with a locally defined conforms method.5

2.5 Overheads
Implicit resolution together with macro expansion can sometimes significantly increase compilation
time. To illustrate the problem, consider the JSON serialization of algebraic data types using the
circe.io6, a popular JSON serialization library. We define two ADTs: case class A(x: String) and
case class B(xs: List[A], ys: List[A]), and a method to print out their JSON representation:
def print(a: A, b: B) = println(a.asJson, b.asJson)

The asJson method is an extension method defined in the circe.io as def asJson(implicit encoder:

Encoder[T]): Json. It uses an implicit parameter of type Encoder[T] effectively limiting its applicability
to instances that define corresponding encoder. For the code to compile, two encoders Encoder[A]

and Encode[B] that turn A and B into Json are needed. The circe.io library gives three options for
creating the encoder: manual, semi automated and automated.
The manual encoding involves implementing the single method in Encoder, manually creating
an instance of Json with the appropriate fields (cf. Listing. 4a). While simple, it is a boilerplate
code. The semi-automated solution delegates to derivedEncored that synthesizes the appropriate
type at compile time through implicit type class derivation and macros (cf. Listing. 4b). The fully
5Reported in Scala issue #7788, cf. https://github.com/scala/bug/issues/7788
6cf. https://github.com/circe/circe
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object manual {

implicit val eA: Encoder[A] = (a: A) =>

obj("x"->str(a.x))

implicit val eB: Encoder[B] = (b: B) =>

obj("xs" -> arr(b.xs.map(_.asJson)),

"ys" -> arr(b.ys.map(_.asJson)))

}

(a) manual

object semiauto {

import io.circe.generic.semiauto._

implicit val eA: Encoder[A] = deriveEncoder[A]

implicit val eB: Encoder[B] = deriveEncoder[B]

}

(b) semi-automated
import io.circe.generic.auto._

(c) automated

Fig. 4. Type class derivations

automated solution, does not require extra code at the client side beside importing its machinery
(cf. Listing. 4c). Compile time is affected by the choice of approach; taking the manual as a base
line, semi-automated is 2.5x slower and automated is 3.8x slower.

Table 1. Count of implicit resolutions
and macro expansions, and timing of
the typer phase in scalac 2.12.8 with
-Ystatistics:typer flag.

Implicits Macros Time
Manual 13 0 .1s
Semi 35 51 .3s
Auto 52 78 .5s

The reason for this compile-time slow-down is the in-
crease in the number of implicit resolutions triggered
and macro expansion as shown in Table 1. The difference
between the automated and semi-automated is that the
former caches the derived instances in the implicit values
eA and eB and so the eA which is synthesized before eB

will be reused for deriving eB. The automated derivation
synthesizes new instances for each application. In this
simple example, it generates 140 additional lines of code
at the println7. Caching of derived type classes was al-
ready reported to significantly improve the compilation
time of various projects [Cantero 2018; Torreborre 2017]. One difficulty is that since the implicit
scope is invisible, it is harder to figure out which implicits are derived where and which are causing
slowdowns. Currently, the only way is to use a scalac-profiling8, compiler plugin which outputs
more detailed statistics about implicit resolution and macro expansion.

3 SCALA ANALYSIS PIPELINE
We have implemented a data analysis pipeline targeting large-scale analysis of Scala programs.
To the best of our knowledge, this is the only pipeline able to scale to thousands of projects. Our
infrastructure can be extended for other analyses and it is available in open source.

Figure 5 gives an overview of the pipeline; every step shown in the figure is fully automated. The
first step is to download projects hosted on GitHub. Next, gather basic metadata and in particular
infer the build system each project uses. Incompatible projects are discarded in the next step. These
are projects that do not meet the technical requirements of the analysis tools. The fourth step is to
use the DéjàVu tool [Lopes et al. 2017] to filter out duplicate projects. The fifth step is to attempt to
compile the corpus and generate semantic information. The final step is to load the extracted data
and analyze them. The pipeline is run in parallel using GNU parallel [Tange et al. 2011] but the
analysis is resource intensive. On our server (Intel Xeon 6140, 2.30GHz with 72 cores and 256GB of
RAM) we were not able to compile more than 12 projects in parallel.

7Measured in the expanded code obtained from -Xprint:typer compiler flag
8cf. https://github.com/scalacenter/scalac-profiling
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Fig. 5. Scala Analysis pipeline. (1) is the size of source code, (2) is the size of source plus compiled code and
generated SemanticDB, (3) is the size of extracted implicits data model, (4) is the size of exported CSV files.
The code size include tests.

The pipeline is reusable for other semantic analyses on Scala code bases, as only the last two
steps relate specifically to implicits. At the end of the Compile and generate SemanticDB task, the
corpus contains built projects with extracted metadata and SemanticDB filesÐthese SemanticDB
files contain syntactic information as well as semantic information (Scala symbols and types).

The pipeline logs all the steps for each project and provide an aggregated summaries. The analysis
is done in R, and even though it is possible to load Google Protocol Buffers into R, it is not practical.
Thus, we first aggregate the extracted data and export them into CSV format, which is more natural
to work with in R. This is implemented in ~500 lines of make files and ~5K of R code. The implicit
extractor is written in ~7.2K lines of Scala code.

The pipeline uses Scalameta9, a library that provides a high-level API for analyzing programs.
One part of this library is a compiler plugin that for each compilation unit produces a data model
with syntactic and semantic information. This includes a list of defined and referenced symbols
as well as synthetic call sites and parameters injected by the compiler. The result is stored in
a binary SemanticDB10 file (in Google Protocol Buffer serialization format). It can also extract
symbol information from compiled classes allowing us to find implicits defined in external project
dependencies. Note that this analysis would have not been possible with only syntactic information;
compile-time information like types is required to match up call site and declaration site due
to the fact that implicits themselves are type-directed rewritings performed by the compiler at
type-checking time.

Based on this we have built a tool that extract implicit declarations and call sites. There are two
limitations with Scalameta: it is limited to certain versions of Scala (2.11.11 in the 2.11 branch and
2.12.4 in the 2.12 branch), and it does not support white-box macros (i.e., macros without precise
signatures in the type system before their expansion) [Burmako 2017].

Another thing to consider when using SemanticDB is that it requires compiling the projects. The
Scala compiler is about an order of magnitude slower than a Java compiler11 and the SemanticDB
compiler plugin adds additional overhead. For our analysis Sbt is used to rebuild each project three
times. There is no easy way around this. As noted above, lightweight, syntax-based approaches
using regular expressions or pattern matching over AST nodes would not work because the call

9cf. https://scalameta.org/
10cf. https://scalameta.org/docs/semanticdb/specification.html
11cf. https://stackoverflow.com/a/3612212/219584
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sites that use implicits are not visible in the source/AST, and to identify these patterns requires
resolving terms and types from the declaration- and use-sites.

Scala projects are compiled by build tools which are responsible for resolving external dependen-
cies. We chose Sbt as it is the most-used tool in the Scala world. Since version 0.13.5 (August 2014),
it supports custom plugins which we use to build an extractor of metadata. Next to the version
information and source folder identification, the extracted metadata gives us information about
project internal and external dependencies. This is necessary for assembling project’s class-path
that is used to resolve symbols defined outside of the project.

3.1 Implicit Extraction
The SemanticDB model contains low-level semantic information about each compilation unit.
This includes synthetics, trees added by compilers that do not appear in the original source (e.g., in-
ferred type arguments, for-comprehension desugarings, C(...) to C.apply(...) desugarings, implicit
parameters and call sites). These trees are defined as transformations of pieces of the original Scala
AST and as such they use quotes of the original sources. For example, the following Scala code:
import ExecutionContext.global; Future(1)

will have two synthetic trees injected by the compiler:
- ApplyTree(OriginalTree(1,60,1,86), IdTree("EC.global"))

- TypeApplyTree(SelectTree(OriginalTree(1,60,1,83),IdTree("Future.apply()")),TypeRef("Int"))

In this form, SemanticDB is not convenient for higher-level queries about the use of implicits. In
order to do this, we transform SemanticDB into our own model that has declarations and call
sites resolved. This is done in two steps. First, we extract implicit declarations by traversing each
compilation unit and collecting declarations with the implicit modifier. For each declaration, we
resolve its type using the symbol information from the SemanticDB and the project class path. This
is done recursively in the case the declaration type has parents. Next, we look into the synthetic
trees and extract inserted implicit function applications. Together with the project metadata, both
declaration and call sites are stored in a tree-like structure using the Google Protocol Buffer format.
In our example, the extractor will produce 13 declarations and one implicit call site including:

// def apply [T ]( body : => T)( implicit executor : EC)

- Declaration("Future.apply()", DEF, ret=Ref("Future.apply().[T]"), params=List(

ParamList(Param("body", Ref("Future.apply().[T]"))),

ParamList(Param("executor", Ref("EC"), isImplicit=true))))

// implicit val global : EC

- Declaration("EC.global", VAL, ret=Ref("EC",List()), isImplicit=true)

// Future . apply [ Int ](1) ( EC. global )

- CallSite("Future.apply()", typeArgs=Ref("Int"), implicitArgs=Ref("EC.global"))

Such model can be queried using the standard Scala collection API. For example, we can list a
project’s ExecutionContext declarations and the corresponding call sites that use them as follows:
val declarations = proj.declarations filter (dcl =>

dcl.isImplicit && dcl.isVal && dcl.returnType.isKindOf("EC"))

val callsites = {

val ids = declarations.map(_.declarationId).toSet

proj.implicitCallsites filter (cs =>

cs.implicitArguments exists (arg => ids contains arg))

}

The extractor is run per project in parallel and the results are merged into one binary file. This file
can be streamed into a number of processors that export information about declarations, call sites,
implicit conversions and implicit parameters into CSV files.
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4 PROJECT CORPUS
For this paper we analyzed 7,280 projects consisting of 18.7M lines of Scala code (including 5.9M
lines of tests and 2.2M lines of generated code). Most projects are small, the median is 677 lines
of code, but the corpus also includes projects with over 100K lines of source code. 4,197 projects
use Scala 2.11 but they account for less code (43.8%) and fewer stars (33.7%). For the remainder
of the paper we partition our corpus in four categories: small apps are project with fewer than
1,000 LOC, large apps are projects with more than 1,000 LOC, libraries are projects that are listed
on Scaladex. We also extract the test code from all projects into the tests category. Scaladex is a
package index of projects published in Maven Central and Bintray repositories. These labels are
somewhat ad-hoc as there is not always a strong reason behind the addition of a project to Maven
Central or Bintray. However, manual inspection suggests that most of the projects that appear on
Scaladex are intended for reuse.

Table 2. Project categories

Category Projects Code size GitHub stars Commits
Small apps. 3.3K 1M (mean=0.3K) 28K (mean=8) 139K (mean=41)
Large apps. 1.3K 5M (mean=4.0K) 74K (mean=57) 425K (mean=325)
Libraries 2.6K 6M (mean=2.4K) 285K (mean=108) 712K (mean=271)
Tests 5.4K 5M (mean=1.1K) - -

Figure 6 shows all projects, the size of the dots reflects number of stars, the color their category
(large/small apps or libraries), the x-axis indicates the number of lines of code (excluding 5.9M lines
of tests) in log scale, the y-axis gives the number of commits to the project in log scale. Solid lines
indicate the separation between small and large applications. Dotted lines indicate means.

The corpuswas obtained frompublicly available projects listed in theGHTorrent database [Gousios
2013] and Scaladex. The data was downloaded between January and March 2019. We started with
65,177 non-empty, non-fork projects, which together contained 121.4M lines of code. We filtered
out projects that were not compatible with our analysis pipeline (e.g., projects using early versions
of Scala) and removed duplicates. 43K use Sbt as their build system (other popular build systems
are Maven with 5.1K projects and Graddle with 1.5K). From the Sbt projects, 23.6K use Sbt version
0.13.5+ or 1.0.0+ that is required by our analysis. We thus discarded about half of the downloaded
code.

For duplicates, the problem is that even without GitHub forks, the corpus still contained unofficial
forks, i.e., copies of source code. For example, there were 102 copies of spark. Since spark is the largest
Scala project (over 100K LOC), keeping them would significantly skew the subsequent analysis
as 37.6% of the entire data set would be identical. In general, getting rid of duplicate projects is
difficult task as one needs to determine the origins of individual files. We use that following criteria
to retain a project: (1) it must have more than one commit, (2) it must be active for at least 2 months,
(3) it must be in Scaladex or have less than 75% of file-level duplication or more than 5 stars on
GitHub, and (4) it must be in Scaladex or have less than 80% duplication or more than 500 stars on
GitHub. These rules were tuned to discard as many duplicates as possible while keeping originals.
While large numbers of GitHub stars do not necessarily mean that a project widely-used, originals
tend to have higher star counts than copies. The actual thresholds were chosen experimentally to
make sure we keep all the bigger (> 50K LOC) popular Scala projects without any duplicates. We
excluded 12,550 projects (33.1M lines of code). While this is over half of the source code from the
compatible Sbt projects, we lost fewer than 2.8% stars.
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Fig. 6. Corpus overview

From the resulting 11,057 projects, we were able to successfully compile 7,326 projects. 3,731
projects failed to build. We follow the standard procedure of building Sbt projects. If a project
required additional steps, we marked it as failed. The following are the main sources of failures:
− Missing dependencies (2.1K).Mostmissed dependencieswere for scalajs (964), a Scala-to-JavaScript

compiler with a version that was likely removed because of security vulnerabilities. The next
most frequent issue was due to snapshot versions (263) that were no longer available. The remain-
der were libraries that were taken down or that reside in non-standard repositories. Following
common practice, we use a local proxy that resolves dependencies. No additional resolvers were
configured. The proxy downloaded 204K artifacts (110GB).

− Compilation error (873). Some commits do not compile, and others fail to compile due our
restriction on Scala versions. Scalameta requires Scala 2.11.9+ or 2.12.4+. Some projects are
sensitive even down to the path version number. Some of these version upgrades might have
also caused the missing dependencies in case the required artifact was built for a particular Scala
version.

− Broken build (189). The Sbt could not even start due to errors in the build.sbt.
− Empty build (156). Running Sbt did not produce class files, leaving the projects empty. This

happens when the build has some non-standard structure.
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Finally, in the analysis, we discarded 46 projects (1.1% of the code) because some of their referenced
declarations were not resolvable (the Scalameta symbol table did not return any path entry) and
inconsistencies in SemanticDB. Table 3 lists some of the top rated projects that were included in
the final corpus, including number of stars, lines of code, number of commits, level of duplication,
Scala version and whether it is listed in Scaladex.

Table 3. Top 40 open source projects

Project GitHub stars Code size Commits Duplication Scala version Scaladex
apache/spark 21,067 238,062 23,668 0.4 2.12.8 Y
apache/predictionio 11,696 12,764 4,461 0 2.11.12 N
scala/scala 11,386 139,300 28,062 0.9 2.12.5 Y
akka/akka 9,666 109,359 22,966 0.001 2.12.8 Y
gitbucket/gitbucket 7,612 31,144 4,874 0 2.12.8 Y
twitter/finagle 7,003 63,976 6,386 0.01 2.12.7 Y
yahoo/kafka-manager 6,958 16,733 596 0.5 2.11.8 N
ornicar/lila 5,218 175,054 30,617 0.01 2.11.12 N
rtyley/bfg-repo-cleaner 5,014 1,351 465 0 2.12.4 Y
linkerd/linkerd 4,910 74,775 1,344 0.003 2.12.1 Y
fpinscala/fpinscala 4,244 5,914 327 1 2.12.1 N
haifengl/smile 4,242 4,731 1,271 0 2.12.6 Y
gatling/gatling 4,151 24,322 7,900 0 2.12.8 Y
scalaz/scalaz 4,079 34,146 6,523 0 2.12.8 Y
mesosphere/marathon 3,823 39,097 6,694 0.03 2.12.7 N
sbt/sbt 3,782 35,574 6,726 0.4 2.12.8 Y
twitter/diffy 3,375 3,778 73 0 2.11.7 Y
lampepfl/dotty 3,278 88,680 14,616 0.3 2.12.8 N
twitter/scalding 3,113 29,346 4,133 0 2.11.12 Y
typelevel/cats 3,093 23,607 3,878 0.009 2.12.7 Y
scalanlp/breeze 2,816 35,747 3,461 0.002 2.12.1 Y
scalatra/scalatra 2,382 8,914 3,174 0.3 2.12.8 Y
netflix/atlas 2,288 22,474 1,450 0 2.12.8 Y
spark-jobserver/spark-jobserver 2,286 7,403 1,571 0.3 2.11.8 Y
twitter/util 2,243 26,927 2,472 0.2 2.12.7 Y
slick/slick 2,188 23,622 2,084 0 2.11.12 Y
laurilehmijoki/s3_website 2,178 1,435 1,014 0 2.11.7 N
twitter/summingbird 2,011 9,057 1,790 0.3 2.11.12 Y
MojoJolo/textteaser 1,942 420 49 0 2.11.2 N
twitter/finatra 1,888 14,071 1,772 0.001 2.12.6 Y
twitter/algebird 1,836 23,676 1,502 0 2.11.12 Y
scala-exercises/scala-exercises 1,775 5,398 1,570 0 2.11.11 Y
circe/circe 1,633 8,140 1,749 0.006 2.12.8 Y
datastax/spark-cassandra-connector 1,569 11,120 2,418 0.2 2.11.12 Y
rickynils/scalacheck 1,480 4,038 1,091 0 2.12.6 Y
monix/monix 1,466 33,749 1,251 0 2.12.8 Y
http4s/http4s 1,459 27,412 6,765 0.003 2.12.7 Y
sangria-graphql/sangria 1,442 14,999 975 0.2 2.12.7 Y
spotify/scio 1,439 20,477 2,659 0.002 2.12.8 Y
coursier/coursier 1,417 13,313 1,984 0 2.12.8 Y
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5 ANALYZING IMPLICITS USAGE
This section presents the results of our analysis and paints a picture of the usage of implicits in our
corpus of Scala programs. We follow the structure of Section 2 and give quantitative data on the
various patterns and idioms we presented including details about how identified them. We further
discuss the impact of implicits on code comprehension and compilation time.

Identifying implicits requires performing a number of queries on the data files produced by our
pipeline. Doing this also turned out to be necessary to remove duplication due to compilation
artifacts. These come from projects compiled for multiple platforms and projects compiled for
multiple major versions of Scala. While the main compilation target for Scala projects is Java
byte-code (7,075 projects), JavaScript and native code are also potential targets. To prevent double
counting, we make sure that shared code is not duplicated. Since Scala 2.11 and 2.12 are not binary
compatible, libraries supporting both branches cross compile to both versions. We take care to
compile only to one version.
In the remainder of this paper, when we refer to the łScala library,ž łScala standard library,ž or

sometimes just to łScalaž we mean code defined in org.scala-lang:scala-library artifact.

Overview of Results. Out of the 7,280 analyzed projects, 7,148 (98.2%) have at least one implicit
call site. From over 29.6M call sites in the corpus (explicit and implicit combined), 8.1M are call
sites involving implicits. Most of these calls are related to the use of implicit parameters (60.3%).
Figure 7 shows for each category a distribution of implicit call site ratios. The box is the 25th/75th
percentiles and the line inside the box represents the median with the added jitters showing the
actual distribution. For applications and libraries, the median is similar. It is smaller ~17.1%. In
the case of test code, it is more than double, 38%. There tend to be more implicit call sites in tests
than in the rest of the code. That is not surprising because the most popular testing frameworks
heavily rely on implicits. Across the project categories the median is 23.4% (shown by the dashed
line)Ði.e., one out of every four call sites involves implicits.
Figure 8 shows the distribution of the declarations that are being called from the implicit call

sites. There is a big difference between the test and non-test category. In the case of the both
applications and libraries, most implicits used come from the standard library, followed by their
external dependencies. The main sources of implicits in Scala are collections, concurrency and
reflection packages together with the omnipresent scala.Predef object.

The collections are used by 80.3% projects (from 96.6% in large apps to 44.6% in tests). Most of the
collection transforming operations such as map, use a builder factory passed as an implicit parameter
CanBuildFrom. 38.3% of all implicit call sites involving methods that use this implicit parameter appear
in libraries. Implicit parameters are used for reflection. Instances of Manifest, ClassTag or TypeTag

classes can be requested from the compiler to be passed as implicit arguments, allowing one to

Small apps

Large apps

Libraries

Tests

0% 25% 50% 75%

Fig. 7. Ratio of implicit call
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get in-depth information about the type parameters of a method at runtime, circumventing the
limitation of Java’s type erasure. This is used a lot in large applications (90.2%). Less in libraries
(61.7%) and small projects (56%) or tests (56.4%). Over half of all the large projects (58.5%) and third
of libraries (32.1%) employ some concurrency routines from the Scala standard library. scala.Predef
defines basic conversion like String to StringOps (extending the functionality of Java strings) or an
arrow association, allowing one to use a->b to create a tuple of (a,b). These are used by almost all
the projects regardless of category.

Excluding the Scala standard library and testing frameworks, the rest of the implicits in the case
of application and libraries come from a number of different external dependencies. There are
some well known and projects with rich set of implicit usage such as the Lightbend/Typesafe stack
with Play (a web-application framework, used in 5% of implicit call sites), Slick (object-relational
mapping, 2.6%) or akka (an actor framework, 2.3%). These libraries define domain-specific languages
which, in order to fit well in the host language yet to appear to introduce different syntactic forms,
heavily rely on implicits. Next to a more flexible syntax (as compared to Java or C#), implicits are
the main feature for embedding DSLs.
In the case of tests, the vast majority of implicits comes from project dependencies, which are

dominated by one of the popular testing frameworks. These frameworks define DSLs in one form
or another, striving to provide an API that reads like English sentences. For example a simple test:
"Monte Carlo method" should "estimate pi" in { MCarloPi(tries=100).estimate === 3.14 +- 0.01 }

contains six implicit call sites. Four are implicit conversions adding methods should to String, in
to ResultOfStringPassedToVerb (the resulting type of calling the should method), === and +- to Double.
Three of them additionally take implicit parameters for pretty-printing, source position (generated
by a macro), test registration, and floating point operations. The implicit macro generating the
source position is actually the single most used implicit parameter in the corpus with 912.7K
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instances. Excluding the test frameworks, the ratio of implicit locations become very close to that
of the main code, with collections and scala.Predef dominating the distribution.

5.1 Implicit Conversion
We recognize conversions by finding signatures that are either: (1) an implicit def with one non-
implicit parameter (and 0+ implicit parameters) and a non-Unit return, or (2) an implicit val, var or
object that extends a function type T=>R such that R is not Unit. Note, that implicit class declarations
are already de-sugared into a class and a corresponding implicit def.

Table 4 summarizes conversions across the four categories of projects; X (Y% Z%) are such that
X is the number of occurrences, Y% is the ratio of X across all categories and Z is a ratio of projects
identified in the given category. As expected, the majority of implicit conversions (80%) are defined
in libraries (52% of libraries define at least one conversion) while most use is in the tests (61% of all
implicit conversion call sites).

Table 4. Conversions

Small Apps Large Apps Libraries Tests
Declarations 2K (04% 22%) 7K (13% 58%) 49K (80% 52%) 2K (03% 11%)
Call sites 89K (04% 88%) 384K (15% 99%) 514K (20% 94%) 1M (61% 95%)

Table 5 lists the projects declaring and using the most conversions; each project’s GitHub name is
followed by its star rating, lines of code, and the number of occurrences. It is interesting to observe
that the projects that define the most conversions are not necessarily the ones which use the most,
as usage is likely correlated to project size.

Table 5. Top conversions

Project Declarations Project Callsites
shadaj/slinky (265, 46K) 34K exoego/aws-sdk-scalajs-facade (3, 302K) 130K
pbaun/rere (4, 14K) 446 scalatest/scalatest (782, 76K) 116K
etorreborre/specs2 (642, 26K) 440 apache/spark (21K, 238K) 60K
sisioh/aws4s (7, 15K) 402 akka/akka (10K, 109K) 30K
CommBank/grimlock (29, 22K) 385 gapt/gapt (48, 68K) 22K
scala/scala (11K, 139K) 346 ornicar/lila (5K, 175K) 17K
scalatest/scalatest (782, 76K) 343 psforever/PSF-LoginServer (28, 41K) 15K
scalan/special (2, 33K) 336 broadinstitute/cromwell (384, 65K) 15K
scalaz/scalaz (4K, 34K) 301 hmrc/tai-frontend (0, 31K) 14K
lift/framework (1K, 42K) 280 getquill/quill (1K, 11K) 14K

Conversions are used in 96.8% of all projects (7,050). There are 2.5M implicit conversions or 31.5%
of all implicit call sites. This is understandable as it is hard to write code that does not, somehow,
trigger one of the many conversions defined in the standard library. In fact, for application code
47.4% of implicit conversions have definitions originating in the standard library. Most conversions,
61.1% to be exact, happen in tests; for those, 59.4% of them have definitions that originate from one
of the two popular testing frameworks (scalatest or specs2). If we exclude the standard library and
testing frameworks, most conversions are defined in imported code, only about 18.8% are calls to
conversions with definitions local to their project.

In terms of conversion declarations, 41.1% of projects (2,991) provide 61,995 conversions (16.7% of
all declarations) with a median of 3 per project and a s.dev of 615.5. As expected, testing frameworks
have many declarations (343 in scalatest, 440 in specs2). We note that slinky defines over 33.6K
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conversions (almost all programatically generated). The reason is that this project aims at allowing
one to writing React code (a JavaScript library for building user interfaces) in Scala in a similar
manner as to that of JavaScript. This project is hardly used, we could find only 2 clients (with 3.6K
LOC) that used 8 slinky conversions.
The most used conversion is ArrowAssoc as it enables users to create tuples with an arrow (e.g.,

1 -> 2). The next most popular is augmentString, a conversion that allows users to use index sequence
methods on String objects. On average, projects targeting JavaScript use 2.5 times more often
implicit conversions than JVM projects. Most of these conversions come from libraries that simplify
front-end web development with DSLs for recurring tasks such as DOM construction and navigation.
Only 1.1K (0.3%) of the implicit conversions were defined with functional types (i.e., using implicit

val, var or object); this is good as implicit values that are also conversions can be the source of
problems.

5.2 Implicit Parameters
We record all method and constructor declarations with implicit parameter list. Table 6 summarizes
parameters across the four categories of projects; X (Y% Z%) are such that X is the number of
occurrences, Y% is the ratio ofX over all categories and Z is a ratio of projects in the given category.

Table 6. Parameters

Small Apps Large Apps Libraries Tests
Declarations 8K (06% 35%) 50K (32% 73%) 87K (55% 68%) 11K (07% 23%)
Call sites 134K (04% 89%) 749K (20% 99%) 691K (19% 94%) 2M (58% 95%)

Table 7 lists the projects declaring and using the most implicit parameters; each project’s GitHub
name is followed by its star rating, lines of code, and the number of occurrences. As with conversion,
the projects that define the most implicits are not necessarily the ones with most calls.

Table 7. Top implicit parameters

Project Declarations Project Callsites
lampepfl/dotty (3K, 89K) 4K scalatest/scalatest (782, 76K) 242K
scalaz/scalaz (4K, 34K) 4K apache/spark (21K, 238K) 59K
typelevel/cats (3K, 24K) 3K typelevel/cats (3K, 24K) 53K
robertofischer/hackerrank (0, 50K) 2K CommBank/grimlock (29, 22K) 52K
scalatest/scalatest (782, 76K) 2K exoego/aws-sdk-scalajs-facade (3, 302K) 49K
sirthias/parboiled2 (604, 6K) 1K akka/akka (10K, 109K) 43K
laserdisc-io/laserdisc (23, 7K) 1K monix/monix (1K, 34K) 40K
slamdata/quasar (742, 27K) 1K scalaz/scalaz (4K, 34K) 39K
etorreborre/specs2 (642, 26K) 984 slamdata/quasar (742, 27K) 31K
EHRI/ehri-frontend (10, 68K) 981 lampepfl/dotty (3K, 89K) 29K

Calls sites with implicit parameters are frequent, they account for 46.2% (3.7M) of all Scala call
sites. As shown in Table 6, tests account for 58% of these calls. Small applications have a lower
proportion, most likely because they account for relatively few lines of code.

In terms of declarations, 78.2% of projects (5.7K) have over 370.7K implicit parameter declarations.
The remaining projects do not declare any. The majority, 89.6% (332.2K), of declarations are public.
Over half of the declarations come from 200 projects which often implement DSL-like APIs. This
also happens internally in applications. For example, ornicar/lila, an open source chess server,
is one of the largest and most popular apps in the corpus. It uses implicits for a small database
management DSL.
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5.3 Idioms and Patterns
In this subsection, we look at popular implicit idioms and answer the question how frequently are
these idioms used. For each, we describe the heuristic used to recognize the pattern and give a table
with the 10 top most projects in terms of declarations as well as in use in terms of call sites. Each of
the table has the same structure: each project’s GitHub name is followed by its star rating, lines of
code, and the number of occurrences for declarations and call sites.

Table 8 gives a summary of the declaration and uses of the various idioms and patterns split by
our code categories; X (Y% Z%) are such that X is the number of occurrences, Y% is the ratio of X
over all categories and Z is a ratio of projects in the given category.

Table 8. Idioms and patterns

Pattern Small Apps Large Apps Libraries Tests
Late Trait Implementation 278 (08% 04%) 968 (28% 15%) 2.1K (59% 14%) 177 (05% 01%)
Extension Methods 1.7K (09% 17%) 5.1K (28% 48%) 10.5K (57% 45%) 1.2K (06% 08%)
Type Classess 4.3K (05% 19%) 17.2K (21% 49%) 54.2K (67% 53%) 5.8K (07% 15%)
Extension Syntax Methos 1.3K (06% 09%) 4.3K (20% 28%) 13.9K (66% 31%) 1.6K (08% 06%)
Type Proofs 110 (06% 01%) 320 (18% 05%) 1.3K (73% 06%) 39 (02% 00%)
Context 5K (06% 25%) 34.9K (41% 62%) 39.2K (46% 50%) 5.7K (07% 14%)
Unrelated Conversions 672 (02% 07%) 2.3K (06% 26%) 38.1K (92% 20%) 441 (01% 03%)
Bidirectional Conversion 197 (17% 01%) 321 (28% 06%) 556 (49% 03%) 61 (05% 00%)

(a) Declarations

Pattern Small Apps Large Apps Libraries Tests
Late Trait Implementation 21.4K (07% 54%) 67.3K (22% 84%) 97.8K (31% 54%) 125.4K (40% 47%)
Extension Methods 40.9K (03% 68%) 207.7K (13% 95%) 250.7K (15% 82%) 1.1M (69% 90%)
Type Classess 99.4K (05% 86%) 502.2K (23% 99%) 544K (25% 92%) 1.1M (48% 88%)
Extension Syntax Methos 42.7K (03% 55%) 213.5K (16% 89%) 227.5K (17% 61%) 881K (65% 75%)
Type Proofs 1.7K (03% 19%) 10.6K (19% 61%) 14.9K (27% 44%) 28.8K (51% 19%)
Context 35.9K (02% 60%) 239.2K (14% 87%) 154.6K (09% 61%) 1.3M (75% 84%)
Unrelated Conversions 29.7K (07% 72%) 107.4K (25% 96%) 112.9K (26% 78%) 178.1K (42% 57%)
Bidirectional Conversion 1.9K (06% 13%) 7.9K (25% 42%) 8.8K (28% 26%) 13.2K (41% 13%)

(b) Call sites

5.3.1 Late Trait Implementation. Late traits are recognized by looking for implicit def T=>Rwhere R

is a Scala trait or Java interface. Technically, the same effect can be achieved with an implicit class

extending a trait, but in all cases the implicit class adds additional methods, and thus is disqualified.
As Table 8 shows there are only a few declarations of this pattern, mostly in libraries. Table 9 gives
the top 10 projects using late traits.
Most conversions, 79.8%, are used between types defined in the same project. Conditional imple-
mentation account for 16.4% of this pattern. 19.7% convert Java types (from 176 different libraries).
Focusing on the JDK, 53 conversions are related to I/O, 50 are from Java primitives and 27 involve
time and date types. There are 990 conversions from Scala primitives with String (217) and Int (77)
being the most often converted from.

5.3.2 Extension Methods. In general extension methods can be defined using both implicit class

and implicit def. While the former is preferred, the latter is still being used. Since an implicit def

can be also used for late trait implementation or to simply relating two types, we only consider
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Table 9. Top late traits

Project Declarations Project Callsites
lift/framework (1K, 42K) 152 exoego/aws-sdk-scalajs-facade (3, 302K) 49K
lampepfl/dotty (3K, 89K) 106 scalatest/scalatest (782, 76K) 9K
etorreborre/specs2 (642, 26K) 94 akka/akka (10K, 109K) 6K
scala/scala (11K, 139K) 82 CommBank/grimlock (29, 22K) 4K
CommBank/grimlock (29, 22K) 81 hmrc/tai (1, 13K) 3K
scalatest/scalatest (782, 76K) 74 broadinstitute/cromwell (384, 65K) 3K
l-space/l-space (3, 17K) 68 maif/izanami (91, 19K) 2K
anskarl/auxlib (1, 1K) 63 etorreborre/specs2 (642, 26K) 2K
anskarl/LoMRF (58, 13K) 63 mattpap/mathematica-parser (24, 476) 2K
squeryl/squeryl (521, 9K) 49 playframework/play-json (193, 5K) 2K

implicit def with a return type that is neither a Scala trait nor a Java interface and that is defined in
the same file as the conversion target because extension methods are usually collocated in either the
same compilation unit or in the source file. We found 12,150 implicit classes, 65.3% of all extension
methods. Table 8 shows that extension methods are widely used, they are defined across the corpus
and in particular in large applications and libraries. Their use is widespread as well. The top 10
projects using extension methods appear in Table 10.

Table 10. Top extension methods

Project Declarations Project Callsites
pbaun/rere (4, 14K) 428 scalatest/scalatest (782, 76K) 87K
etorreborre/specs2 (642, 26K) 295 exoego/aws-sdk-scalajs-facade (3, 302K) 46K
scalaz/scalaz (4K, 34K) 281 apache/spark (21K, 238K) 24K
scalan/special (2, 33K) 248 akka/akka (10K, 109K) 22K
lampepfl/dotty (3K, 89K) 214 hmrc/tai-frontend (0, 31K) 14K
ritschwumm/scutil (6, 12K) 214 getquill/quill (1K, 11K) 13K
typelevel/cats (3K, 24K) 171 hmrc/tai (1, 13K) 13K
lift/framework (1K, 42K) 168 monix/monix (1K, 34K) 12K
broadinstitute/cromwell (384, 65K) 166 broadinstitute/cromwell (384, 65K) 10K
monsantoco/aws2scala (19, 10K) 134 hmrc/iht-frontend (1, 49K) 10K

There are 1.9K conditional extensions (10.2%). From these, 1.6K are related to type classes and
323 to contexts. 1.7K instances extends Java types (9.3%) across 676 libraries. Similarly to late
traits, the Java I/O (224), date and time (200) and Java primitives (59) are the most often extended.
Extension methods are also used to extends Scala primitives (3.7K), again String and Int being the
most popular (1,169 and 452 respectively). This is understandable as these are the basic types for
building embedded DSL.

5.3.3 Type Classes. We recognize type classes from their instances that are injected by a compiler
as implicit arguments. What differentiate them from an implicit argument is the presence of type
arguments linked to type parameters available in the parent context. This is what distinguishes a
type class and a context. For example, the following do not match:

def f(x: Int)(implicit y: A[Int]) def f[T](x: T)(implicit y: T)

while the following do:
def f[T](x: T)(implicit y: A[T]) implicit class C[T](x: T)(implicit y: A[T])

Wematch implicit parameters with at least one type argument referencing a type parameter. Table 8
shows that type classes are the most widely declared pattern. Both libraries and large application
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use it frequently. They are also the most frequent call sites. The top 10 projects using type classes
are in Table 11.

Table 11. Top type classes

Project Declarations Project Callsites
scalaz/scalaz (4K, 34K) 4K scalatest/scalatest (782, 76K) 96K
typelevel/cats (3K, 24K) 3K exoego/aws-sdk-scalajs-facade (3, 302K) 49K
robertofischer/hackerrank (0, 50K) 2K typelevel/cats (3K, 24K) 48K
sirthias/parboiled2 (604, 6K) 1K apache/spark (21K, 238K) 46K
slamdata/quasar (742, 27K) 1K CommBank/grimlock (29, 22K) 43K
laserdisc-io/laserdisc (23, 7K) 1K scalaz/scalaz (4K, 34K) 38K
scalatest/scalatest (782, 76K) 947 slamdata/quasar (742, 27K) 30K
twitter/algebird (2K, 24K) 899 laserdisc-io/laserdisc (23, 7K) 18K
scalanlp/breeze (3K, 36K) 887 scalaprops/scalaprops (226, 6K) 17K
nrinaudo/kantan.csv (244, 5K) 832 nrinaudo/kantan.csv (244, 5K) 16K

Type classes are involved in 30% of the implicit calls which use over 11K type classes. Type classes
are dominated by the standard library (42%). As expected, most come from the collection framework,
scala.Predef and the math library. Next are testing libraries (15%) followed by the some of the most
popular frameworks and libraries including Typelevel cats and scalaz that provide basic abstractions
for functional programming, including a number of common type classes. These two libraries are
used by almost 40% in the corpus.

5.3.4 Extension Syntax Methods. From extension methods we select instances that define implicit
parameters that match out type class definition from Section 5.3.3. Summary is in Table 12.

Table 12. Top extension syntax methods

Project Declarations Project Callsites
pbaun/rere (4, 14K) 428 scalatest/scalatest (782, 76K) 87K
etorreborre/specs2 (642, 26K) 295 exoego/aws-sdk-scalajs-facade (3, 302K) 46K
scalaz/scalaz (4K, 34K) 281 apache/spark (21K, 238K) 24K
scalan/special (2, 33K) 248 akka/akka (10K, 109K) 22K
lampepfl/dotty (3K, 89K) 214 hmrc/tai-frontend (0, 31K) 14K
ritschwumm/scutil (6, 12K) 214 getquill/quill (1K, 11K) 13K
typelevel/cats (3K, 24K) 171 hmrc/tai (1, 13K) 13K
lift/framework (1K, 42K) 168 monix/monix (1K, 34K) 12K
broadinstitute/cromwell (384, 65K) 166 broadinstitute/cromwell (384, 65K) 10K
monsantoco/aws2scala (19, 10K) 134 hmrc/iht-frontend (1, 49K) 10K

We found 18.6K of syntaxmethods instances in 2.5K projects. Most of them are defining operations
of generic algebraic data types.

5.3.5 Type Proofs. We recognize this pattern by select implicit def that take generalized type
constraints, such as equality (=:=), subset (<:<) and application (=>) as implicit type parameters.
Summary is in Table 13.

This revealed a very few projects (270) besides Scala itself and related projects (the new Scala 3
compiler). They define 1.6K methods taking type proofs as implicit parameters. Most of them are
small applications which seem to be projects experimenting with type level programming. There are
however interesting use cases. Manually inspecting the bigger projects we found common use cases,
both are related to enforcing certain API restrictions at compile time. In one case (scalajs-reactÐ
another project bringing React application development into Scala), it is used to ensure that a given
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Table 13. Top type proofs

Project Declarations Project Callsites
scalatest/scalatest (782, 76K) 167 CommBank/grimlock (29, 22K) 5K
scalikejdbc/scalikejdbc (982, 13K) 91 akka/akka (10K, 109K) 3K
scalanlp/breeze (3K, 36K) 67 typelevel/cats (3K, 24K) 2K
mpollmeier/gremlin-scala (412, 2K) 54 outworkers/phantom (1K, 12K) 2K
playframework/play-json (193, 5K) 45 scalatest/scalatest (782, 76K) 2K
xuwei-k/applybuilder (7, 767) 42 sisioh/aws4s (7, 15K) 2K
japgolly/test-state (108, 6K) 39 laserdisc-io/laserdisc (23, 7K) 1K
NICTA/scoobi (487, 13K) 34 apache/spark (21K, 238K) 623
scoundrel-tech/scoundrel (0, 10K) 34 tixxit/framian (118, 7K) 546
twitter/scalding (3K, 29K) 34 scoundrel-tech/scoundrel (0, 10K) 541

method is called only once. Another instance (finagle, an RPC system) creates a type-safe builder
pattern that throws a compile-time error in the case the constructed object is missing required field.
In both cases authors used @implicitNotFound annotation to provide customized error message.

5.3.6 Context. Whether or not an implicit argument is an instance of the context pattern is hard
to quantify, since it depends on intent. We recognize them by selecting implicit call sites that are
neither labeled as a type class application nor as a type proof. Summary is in Table 14.

Table 14. Top context

Project Declarations Project Callsites
lampepfl/dotty (3K, 89K) 4K scalatest/scalatest (782, 76K) 201K
scalatest/scalatest (782, 76K) 1K apache/spark (21K, 238K) 38K
sirthias/parboiled2 (604, 6K) 1K akka/akka (10K, 109K) 28K
EHRI/ehri-frontend (10, 68K) 779 monix/monix (1K, 34K) 27K
ornicar/lila (5K, 175K) 774 lampepfl/dotty (3K, 89K) 26K
ponkotuy/MyFleetGirls (86, 26K) 717 CommBank/grimlock (29, 22K) 18K
Sciss/SoundProcesses (23, 13K) 715 hmrc/iht-frontend (1, 49K) 18K
sciss/fscape-next (6, 27K) 696 hmrc/tai-frontend (0, 31K) 17K
ruimo/store (5, 38K) 688 gapt/gapt (48, 68K) 16K
sciss/patterns (1, 8K) 620 twitter/finagle (7K, 64K) 13K

As expected, contexts are used heavily in projects such as Scala compiler (dotty is the new Scala
compiler), spark or akka, i.e., projects that are centered around some main context which is being
passed around in number of methods. Java types are also used as context parameters. Together
50 types from JDK are used in 1.8K methods across 179 projects. The top used one is SQLConnection

followed by interfaces from java.io. Scala primitive types are used in 1,044 methods in 159. Function
types are also used as contexts (645 methods in 154 projects), providing a convenient way to define
application counters, implicit filters and other default data processors.

5.3.7 Anti-pattern: Conversions. Unrelated conversions are public, top-level definitions defined
outside of either from or to compilation units. We recognize them by selecting implicit conversions
that are not block-local, or private, or protected and are not defined in the same compilation unit
as the source or the target type. Summary is in Table 15.
There are 41.5K of unrelated conversions spanning across 1.2K projects (16.2%). Most of them

(33.6K) belong to the already mentioned slinky projects bringing React apps development to Scala.
They are used in 6.1K (83.9%) projects. If we change the query to only regard the same artifact then
it drops too 1.9K conversions in 619 projects. There are some indication that unrelated conversions
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Table 15. Top unrelated conversions

Project Declarations Project Callsites
shadaj/slinky (265, 46K) 34K apache/spark (21K, 238K) 21K
sisioh/aws4s (7, 15K) 402 gapt/gapt (48, 68K) 11K
CommBank/grimlock (29, 22K) 299 scalatest/scalatest (782, 76K) 8K
scala/scala (11K, 139K) 166 akka/akka (10K, 109K) 7K
etorreborre/specs2 (642, 26K) 130 CommBank/grimlock (29, 22K) 6K
squeryl/squeryl (521, 9K) 128 ornicar/lila (5K, 175K) 6K
scoundrel-tech/scoundrel (0, 10K) 113 ilya-klyuchnikov/tapl-scala (126, 13K) 3K
scala/scala-java8-compat (353, 4K) 112 scoundrel-tech/scoundrel (0, 10K) 3K
typelevel/cats (3K, 24K) 110 broadinstitute/cromwell (384, 65K) 2K
lift/framework (1K, 42K) 101 mattpap/mathematica-parser (24, 476) 2K

might be deprecated in the upcoming revision of the Scala language12. The numbers here show,
that these conversions are being defined, but they are usually in the scope of the same library. From
the unrelated conversions, 1.6K from 552 projects involves Scala primitive types. They are present
in all categories, but majority comes from libraries where they are used as building blocks for DSLs.
Only a very few (81 in 47 projects) convert just between primitive types.

For the conversions that go both ways, we consider all pairs of such conversions that are defined
in the same artifact and thus could be easily imported in the same scope.
We have identified 1.1K such conversions defined in 209 (2.9%) projects and used across 1.9K

(26.5%) projects. As expected, this has matched all the Scala-Java collection conversions defined in
the scala.collection package. They are used in 728 (10%) projects. This is significantly less than the
recommended alternative using explicit asJava or asScala decorators that are being used by 22.4% of
projects. 244 projects mix both approaches.
From a manual inspection of some of the other popular bi-directional conversion, we find that

it is used in libraries that provide both Java and Scala API (e.g., spark or akka) allowing one to
freely mix Java and Scala version of the classes. Some libraries use them to provide easier syntax
for its domain objects (e.g., using a tuple to represent a cell coordinate), or lifting types from/to
scala.Option. Another distinct category are conversions between many of the different date and
time representations in both Java and Scala. We found only 129 bi-directional conversions involving
primitive types, out of which 13 are only between primitives.

5.4 Complexity
One question we wanted to address was the amount of work performed by the Scala compiler. This
is motivated by the need for the programmer to reverse engineer the compiler’s work to understand
how to fix their code when an error is related to implicits. In terms of code size, if one were to
sum up the length of the symbols inserted by the compiler at the various call sites that use implicit
arguments, this would amount to 55M characters or about 3.5x the size of the entire Scala project.
Figure 9 shows the distribution of injected implicit arguments into methods. We limit the graph
to 10 injected arguments, but in practice there is a long tail. The measurements are obtained by
inspecting each call site where implicit resolution is involved and counting arguments injected
directly to the target function as well as arguments injected to nested calls needed for the implicit
derivation. While the distribution has a long tail, going all the way to 5,695, the median is 1. At the
extreme, the xdotai/typeless project is exploring type-level programming and has one call site
that includes 5,695 nested implicit calls and value injection. Expressed in length of the injected
code, that call site has the compiler inject 56.2K characters. Figure 10 shows the distribution of
12cf. https://github.com/lampepfl/dotty/pull/2060
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Fig. 10. Implicit parameters

the number of implicit parameter declarations. The data suggests that programmers are likely to
encounter functions with one or two implicits rather frequently. And they are likely to deal with
functions with four or more implicits several times per project.
To help navigate this complexity, the Scala plugin for Intellij IDEA has a feature that can show

implicit hints, including implicit resolution in the code editor. This effectively reveals the injected
code making it an indispensable tool for debugging. However, turning the implicit hints on severely
hinders the editor performance creating a significant lag when working with implicits-heavy files.
The second problem with this is that the Intellij Scala compiler is not the same as scalac and implicit
resolution often disagrees between compiler implementations (e.g., Intellij does not consider implicit
shadowing in lexical context). Another way to mitigate some of the complexity related to errors
occurring during resolution is to customize the error message emitted when an implicit type is not
found. Scala provides the @implicitNotFound(message) annotation to this end, where message can be
parameterized with the names of type parameters that the type defines. In the corpus, we have
found it defined 1.2K times in 436 projects, and used in 110.9K call sites.

5.5 Overheads
Another question we are interested to investigate is the effect of implicits on compile time. We
have demonstrated that on a synthetic example, resolution can significantly impact type-checking
performance. There are 1,969 (8.4M LOC) using Scala 2.12.4+ for which we can get compile time
statistics using the -Ystatistics:typer compiler flag. Furthermore 488 projects (2.8M LOC) use the
shapeless library which is the most common approach to guide the type class derivation [Cantero
2018]. The result of measuring compilation speed between these two sets of projects is shown in
Figure 11. More precisely, the figure shows data for projects that have more than 1,000 lines of
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code (for smaller projects compilation times may be dominated by startup costs). The x-axis shows
the density of implicit call sites (their ratio per line of code, ranging between 0 and almost 2). The
y-axis shows compilation speed measured in lines per second. For this figure we capture the entire
compilation time of each project, including I/O. Higher is better on this graph. Colors distinguish
projects that use type classes (red) from those who do not (blue). The lines indicate an estimate
of the conditional mean function (loess). If implicits were not influencing compilation time, one
would expect both lines to be roughly flat and at the same level. What we see instead confirms
our hypothesis, the cost of compilation increases with the density of implicits and the use of type
classes further reduce compilation speed.

Another manifestation can be found in the scalatest testing framework. It defines a Prettifier for
pretty printing which looks like a perfect candidate for a type class, yet the authors have decided
to use it as a context parameter instead. The reason given for that is performance: łPrettifier is
not parameterized ... because assertions would then need to look up Prettifiers implicitly by type. This
would slow compilation.ž In the corpus there are over 563.6K calls to methods using the Prettifier

context. Resolving all of them implicitly using the implicit type class derivation machinery could
indeed induce a slowdown across 2.5K projects.

5.6 Threats to Validity
We report on two source of threats to validity. One threat to external validity is linked to selection
of code that was analyzed. We analyzed 15% of the Scala code publicly-available on GitHub. Our
findings only generalize to industry if the code we analyzed is representative of industrial use of
implicits. It is possible, for instance, that some companies enforce coding guidelines that impact
the usage of implicits. We have no evidence that this is the case, but cannot rule it out. In terms
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of threats to internal validity we consider our data analysis pipeline. It has several sources of
inaccuracies. We rely on Scalameta to gather synthetic call sites. Scalameta restricts us to two
Scala versions and it only generates metadata for about half of the selected projects. We are also
aware that for 3% of implicit uses symbols could not be resolved.

6 RELATED WORK
The design of implicits as it appears in Scala is but one point in a larger space. While alternative
designs are out of the scope of this work, we mention some important related work. Oliveira
et al. [2010] established the connection between Haskell’s type classes and Scala implicits with
multiple examples. Oliveira et al. [2012] formalized the key ideas of implicits in a core calculus.
Rouvoet [2016] expanded the Oliveira et al. work and proved soundness and partial completeness
independent of termination. Schrijvers et al. [2019] present an improved variant of the implicit
calculus. One key property of this work is the notion of coherence (which is attributed to Reynolds
[1991]). Coherence requires a program to have a single meaning, i.e. it precludes any semantic
ambiguity. Scala eschews coherence in favor of expressivity by allowing overlapping implicits.
Schrijvers et al. propose a design that recovers coherence.

There have been efforts to study how Scala is used by practitioners. Tasharofi et al. [2013] looked
at how often and why Scala developers mix the actor model with other models of concurrency. They
analyzed only GitHub 16 projects at the compiled byte-code level with a custom tool. The choice
of byte-code had some drawbacks. For example, their analysis could not detect indirect method
invocations and thus they had to supplemented it with manual inspection. The same corpus is used
by Koster [2015] to analyze different synchronization mechanisms used in Scala code. Despite using
the same projects, he analyzed 80% more lines of code as the projects were updated to their latest
commit. The increase was mostly due to spark that grew from 12K to 104K lines of code. Unlike
the previous study, he opted for source code analysis based on string matching. De Bleser et al.
[2019] analyzed the tests of 164 Scala projects (1.7M LOC) for a diffusion of test smells. They used
a similar way of assembling a corpus. While they started with 72K projects, but only managed to
compile 2.9K projects. They discard projects with less than 1K LOC or without scalatest unit tests.
For analysis, they also used semantic data from the SemanticDB.
Pradel and Sen [2015] analyzed the use of implicit type conversions in JavaScript. They use

dynamic analysis running hundreds of programs including the common JavaScript benchmarks
and popular real-world websites. In JavaScript, implicit type conversion is basically a type coercion.
Despite that the coercion rules are well formalized, they are fairly complex and confuse even
seasoned JavaScript developers. Unlike in Scala that has static type system, JavaScript uses implicit
type conversion extensively (it is present in over 80% of the studied programs), yet the study finds
that over 98% of the conversion is what the authors consider as harmless.

7 CONCLUSIONS
Implicits are a cornerstone of the Scala programming language. There is hardly any API without
them as they enable elegant architectural design. They allow one to remove a lot of boilerplate by
leveraging the compiler’s knowledge about the code. However, they can be also easily misused and if
taken too far seriously hurt the readability of a code. Implicits are driven by type declarations. Thus,
while, implicits are used transparently, with no indication in the program text, their application is
guided by clear and precise rules. Our data shows that programmers have embraced them, with
98.2% of the projects we analyzed using them, and 78.2% of projects defining at least one implicit
declaration. We also observed the prevalence of the idioms described, as most projects use them in
some form. For implicit conversions, our results indicate that 96.8% of projects make use of them
at some point, with the most popular conversions coming from the standard library and testing
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libraries. From the idioms we presented in this paper, type classes and extension methods are used
extensively. Regarding conversions, most convert to and from types within the scope of the project.
However, there is a number of conversions defined on unrelated types. While deprecating this form
of conversion has been discussed, doing so would break 1.2K projects (16.2%) in our corpus.

Observations for language designers. We have seen many source of complexities related to the
notion of coherence. Future designs of implicits should strongly consider adopting some limits
to expressivity in order to improve code comprehension. A related point is to avoid relying on
names of implicits during their resolution as this leads to subtle errors. Better tool support and
static analysis could help diagnose performance problems and could help code comprehension, but
it is crucial that IDEs and the Scala compiler agree on how resolution is to be performed.

Observations for library designers. Over-engineered libraries are hard to understand. It is worth
considering the costs and benefits of adding, for example, type classes to an API. Asking questions
such as łIs retroactive extension an important use case?ž or łHow much boilerplate can actually be
avoided?ž may help target the right use-cases for implicits. Often the key design issue is whether
good defaults can be provided. When they cannot, the benefits of implicits decrease significantly. A
good library design is one that lets regular users benefit without forcing them fully understand
the cleverness that the library designer employed. Finally, we leave designers with the following
unsolicited advice: Do not use unrelated implicits! Do not use conversions that go both ways! Do
not use conversions that might change semantics!
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