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The pervasiveness and growing complexity of software systems are challenging software engineering to
design systems that can adapt their behavior to withstand unpredictable, uncertain, and continuously
changing execution environments. Control theoretical adaptation mechanisms have received growing
interest from the software engineering community in the last few years for their mathematical grounding,
allowing formal guarantees on the behavior of the controlled systems. However, most of these mechanisms
are tailored to specific applications and can hardly be generalized into broadly applicable software design
and development processes.

This article discusses a reference control design process, from goal identification to the verification and
validation of the controlled system. A taxonomy of the main control strategies is introduced, analyzing their
applicability to software adaptation for both functional and nonfunctional goals. A brief extract on how to
deal with uncertainty complements the discussion. Finally, the article highlights a set of open challenges,
both for the software engineering and the control theory research communities.
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1. INTRODUCTION

The pervasiveness of software in every context of life is placing new challenges on
software engineering. Highly dynamic environments, rapidly changing requirements,
and unpredictable and uncertain operating conditions are pushing new paradigms for
software design, leveraging runtime adaptation mechanisms to overcome the lack of
knowledge at design time and design more robust software.
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The software engineering community has been working in the last decade on a multi-
tude of approaches enhancing software systems with self-adaptation capabilities. How-
ever, most of them are focused on very specific problems and can hardly be generalized
to broadly applicable methodologies [Filieri et al. 2014]. Furthermore, many proposed
adaptation mechanisms lack the theoretical grounding needed to ensure their depend-
ability besides the few specific cases they have been applied on Hellerstein et al. [2010].

Control theory has established in the last century a broad family of mathemati-
cally grounded techniques for designing controllers making industrial plants behave
as expected. These controllers can provide formal guarantees about their effectiveness
under precise assumptions on the operating conditions.

Although the similarities between the control of an industrial plant and the adapta-
tion of a software system are self-evident, most of the attempts at applying off-the-shelf
control theoretical results to software systems achieved very limited results, mostly
tailored to specific applications and lacking rigorous assessment of the adequacy of
the applied control strategies. The two main obstacles to achieve a “control theory
for software systems” are (1) the difficulty in abstracting a software behavior in a
mathematical form suitable for controller design and (2) the lack of methodologies in
software engineering pursuing controllability as a first-class concern [Dorf and Bishop
2008; Diao et al. 2005; Zhu et al. 2009].

Analytical abstractions of software established for quality assurance often help to fill
the gap between software models and dynamic models (i.e., differential or difference
equations) [Wang et al. 1996; D’Ippolito et al. 2010]. However, software engineers often
lack the mathematical background needed for a deeper understanding of these models.
Goal formalization and knob identification are additional concerns of modeling, where
specific characteristics have to be taken into account to achieve a suitable controllability
of the system [Papadopoulos et al. 2015].

Several approaches have been trying to include control theoretical results into more
general methodologies for designing adaptive software systems. The pioneering works
in system engineering [Abdelzaher et al. 2008; Diao et al. 2006; Hellerstein et al.
2004] had the merit of spotlighting how control theoretical results can improve the
design of computing systems. These contributions had a significant impact, especially
on performance management and resource allocation. However, the new trends in self-
adaptive software introduced new software models and a variety of quantitative and
functional requirements beyond the scope of those works. More recently, methodologi-
cal approaches for performance control [Parekh 2010] and the design of self-adaptive
operating systems [Leva et al. 2013] have been proposed. Software engineering and au-
tonomic computing have also highlighted the centrality of feedback loops for adaptive
systems [Brun et al. 2009; Kephart and Chess 2003].

This article extends our previously published contribution [Filieri et al. 2015b], where
we provided a comprehensive analysis of the control theoretical design of self-adaptive
software systems, matching the various phases of software development with the relevant
background and techniques from control theory (Section 2). The goal is to bootstrap
the design of mathematically grounded controllers, sensors, and actuators for self-
adaptive software systems to achieve formally provable effectiveness, efficiency, and
robustness. More specifically, the aim of this article is to provide an overview of the
control techniques that are well known in the control community and can be used or
have been used for the design of self-adaptive software. In preparing this overview, we
took the control perspective and summarized the result of many years of research in
the control field.

To reach this aim, our previous work is here complemented by a detailed taxonomy
of the most important control strategies (Section 3), discussing their applicability to
specific software problems, and by a discussion of the related issue of modeling and
formalizing uncertainty. In Section 4, we sketch some of the current contributions of
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Fig. 1. Steps in the design and development of a control-based mechanism for self-adaptive systems. The
different levels group steps into activities with tighter coupling. This figure originally appeared in Filieri
et al. [2015b].

Fig. 2. Adaptive system: the control perspective. This figure originally appeared in Filieri et al. [2015b].

software engineering to controller design, implementation, and validation that could
be valuable in bridging the gap between the two disciplines. Also, we identify a set of
challenges for control of self-adaptive software (Section 5).

2. CONTROL DESIGN PROCESS

This section discusses the design of a control loop for an existing software system. The
section covers and summarizes the control-based design process proposed in Filieri
et al. [2015b], which the reader can refer to for additional details. The overall process
is depicted in Figure 1, while Figure 2 shows the resulting control scheme. In our
former contribution, we discussed more extensively some of the aspects of each step,
providing also an example of the design process [Filieri et al. 2015b]. Here, on the
contrary, we summarize the process and focus on a taxonomy of control strategies and
on techniques to handle the inherent uncertainty present in software systems.

The process starts with the definition of the goals of the system that will be used by
the controller as feedback signals and to measure and quantify when the adaptive sys-
tem is fulfilling its objectives, denoted by ȳ in Figure 2. The process continues with the
identification of the quantities that can be changed at runtime to realize the adaptation
features, denoted by u in Figure 2. These are usually called “knobs” or “actuators.”

Based on the identified goals and knobs, the next step is to define a model for the
system, denoted by P in Figure 2. Given the model of the system, the next step is to
synthesize a controller C with the most appropriate method among the many different
ones that control theory offers.

The next step is to analyze the closed-loop system and to prove that its behavior
is the desired one. The closed-loop system should reach its goal(s) and be stable and
sufficiently accurate and robust to variations and changes. These properties also should
be verified in the presence of disturbances. If the desired properties are not exhibited,
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the process backtracks to one of the previous steps and a new iteration is started.
Once the desired properties of the closed-loop system are met, the controller should
be implemented and tested, both in isolation and integrated with the system under
control.

2.1. Identify the Goals

The first question that should be answered is, what are the goals that one wants to
achieve by building a control strategy on top of a software system? To build an effective
control strategy, the goals have to be quantifiable and measurable.

The simplest type of goal for an equation-based controller is a reference value to
track. In this case, the control objective is to keep a measurable quantity (response time,
energy consumption, occupied disk space) as close as possible to the given reference
value, called setpoint.1 A second category of goals is a variation of the classic setpoint-
based goal, where the goal resides in a specific range of interest; for example, the
average frame rate should be between 23 and 32 frames per second. Usually it is easy
to transform these goals into equivalent setpoint goals with confidence intervals.

A third broad category of goals concerns the minimization (or maximization) of a
measurable quantity of the system. For example, we may want to deliver our service
with the lowest possible energy consumption. Depending on the specific quantity under
control, certain optimization problems can be reduced again to setpoint tracking. In
particular, if the range of the measured property to optimize is convex and bounded, a
setpoint tracker required to keep the measured property at its minimum possible value
will drive the process as close as possible to the target, that is, toward the minimum
possible value. However, optimization problems usually require more complex control
strategies, especially when the optimization of one or more properties is subject to
constraints on the values of others (e.g., minimize the response time while keeping the
availability above a certain threshold).2

Special attention has to be paid when there are conflicting goals. Two simple types
of conflict resolution strategies are prioritization and cost function definition. In the
former, multiple goals are ranked according to their importance so that whenever it
is not feasible to satisfy all of them at once, the controller will give precedence to the
satisfaction of higher-priority goals first.3 Cost functions are another common means to
specify the resolution of conflicting goals. In this case, the utility function specifies all
the suitable tradeoffs between conflicting goals as the Pareto front of an optimization
problem. Optimal controllers can handle this type of specification, guaranteeing an
optimal resolution of conflicts.

2.2. Identify the Knobs

The second step is to find the knobs that one can tweak in order to act toward the
satisfaction of the specified goals. In some cases, software systems exhibit the same
property and there are clear knobs that one can use to change the behavior of the
system. In Souza et al. [2011], an elicitation methodology is proposed, and the impact
of each knob is evaluated with reference to the design goals.

Another important point when identifying the knobs that can be used for control is
the identification of each knob’s timescale. Some of the knobs, like powering up a new
virtual machine, require time to be effective. The control strategy should be aware of

1Setpoint tracking is a very well-studied problem in control theory [Levine 2010].
2In this case, optimal control, discussed in Section 3.2.2, is more appropriate.
3Several control strategies support the achievement of prioritized goals, for example, daisy chain con-
trol [Levine 2010].
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that and base the action on prediction of the system’s behavior or wait until the effect
of the chosen action is measurable and quantifiable in the system.

2.3. Devise the Model

The next step in the control design process is the choice of a proper model for the
software system under control. In general, to devise a control strategy, one would need
a model of the relationship between the knobs identified in Section 2.2 and the goals
identified in Section 2.1. Such a model represents the effect on the goals of a change in
the knob values.

In control theory, the devised model is analytic, and therefore the interaction is for-
mally described by mathematical relationships. This could mean that logical formulas
are used (especially for discrete event control strategies) or that dynamical models are
written (generally for continuous- or discrete-time-based controllers).

Dynamical models are used to synthesize continuous- or discrete-time-based strate-
gies. A dynamical model can be either in state space form or expressed as an input-
output relationship.

In the first case, one must choose the state variables that keep track of the past
conditions in which the system was found and represent all the necessary knowledge
about the system for understanding the evolution of its dynamics in time, for example,
the length of a queue or the percentage of frames already encoded, or the current en-
coding speed. The knowledge about the state variables’ current values and the input
values of the system allows one to formally determine the values of the output vari-
ables [Papadopoulos et al. 2015]. The choice of the state variables may not be unique
since an infinite number of equivalent representations can be found [Åström and
Murray 2008]. Once the state variables are identified, the relationship between the
input and the state variables should be written, together with the relationship be-
tween the state and the output variables. For example, if the input variable of a queue
is the number of incoming requests and the output variable is the average service time,
the state variable is the number of already enqueued requests. By knowing how many
requests arrived since the last measurement and the service time of each request, one
can determine the average service time of the request that was served in the last time
interval analytically. The resulting equation is the system’s model.

In principle, one could have many equations describing the effect of different inputs
on different state variables and the effect of the state variables on the measurable
outputs. These form a system of equations and constitute the dynamical model [Åström
and Murray 2008] that is used for the controller design. Depending on the structure of
this system, there are different types of models: linear and nonlinear [Åström 2008],
switching, or parameter varying. Equations can also contain parameters that will vary
over time. If the equations are linear, the corresponding systems can be analyzed as
Linear Parameter Varying (LPV) [Sun et al. 2008] ones or switching systems [Liberzon
2003]. In a switching system, there is a certain number of possible parameters, and
while the system is evolving in time, the parameters can switch between the prescribed
alternatives. In LPV systems, usually the alternatives are infinite and the parameters
can take any possible value.

In the second case, the system is expressed as a direct input-output relationship.
Contrary to the state-variable-based representation, this representation of the sys-
tem is unique. State-of-the-art techniques in system identification often permit one to
identify the input-output relationship of a system directly from data, without using
state variables. In the linear case, the input-output relationship can be expressed as
a transfer function [Åström and Murray 2008]. Transfer functions are very useful for
control design, because they encode the input-output relationship with an algebraic
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relationship, which in turn can be used to easily assess the satisfaction of desired prop-
erties of the system. The same properties can be assessed using state-space models, but
they require solving linear systems, which is harder than finding the roots of a poly-
nomial (the standard way to assess the stability of a system specified with a transfer
function).

In writing the model, the possibility of disturbances acting on the system should also
be considered. Disturbances can be modeled together with the system or their existence
can be acknowledged. In the first case, a better control strategy can be designed,
for example, coupling a feedback controller with a feed-forward control strategy that
measures the disturbance and acts to cancel it. In the second case, the feedback control
strategy should be able to reject some of the disturbances.

From a software engineering perspective, a system at this phase is typically rep-
resented by its structure in an architectural model (e.g., UML2, ADDL). Following a
gray-box approach, only the details relevant for the specific adaptation concern are
modeled. As an example, performance-based adaptation typically relies on perfor-
mance prediction approaches for component-based architectures, which in turn rely
on performance-annotated software architecture models [Balsamo et al. 2004; Brosig
et al. 2015]. Architectural models are either directly employed or transformed into
stochastic models (e.g., Queuing Networks [Tribastone 2013], Petri Nets [Ding et al.
2014], Markov models [Calinescu et al. 2012]) and used in the specification of the
adaptation logic of the system.

A representative example of a modeling formalism used in software engineering,
Markov models are a class of state-based models that can be generally used to describe
systems that exhibit probabilistic behavior [Whittaker and Poore 1993]. There exist
a number of Markov models. We categorize those models by the amount of control
available. Although the models described later belong to the discrete-time case, for
each model there also exists a continuous-time counterpart.

In cases of fully deterministic systems, we can use discrete-time Markov chains
(DTMCs). DTMCs describe the probability of moving between system states and
the model itself does not include any controllable actions. There exist several meth-
ods employing DTMCs in the context of controlling software [Calinescu et al. 2012;
Epifani et al. 2009]. A typical scenario includes verifying a DTMC model of a system
against a property. If a violation of the property has been identified, a reconfiguration
of the system is triggered. When some of the actions in the system are controllable,
we can use Markov decision processes (MDPs). MDPs extend Markov chains by model-
ing controllable actions using nondeterminism. The resolution of the nondeterminism
is then used as a controller of the system. Controller synthesis for MDPs is a well-
researched subject with a number of synthesis methods for various types of properties
[Puterman 1994; Baier et al. 2004; Brázdil et al. 2008; Kwiatkowska and Parker 2013].
Systems with multiple players with conflicting objectives where players exhibit prob-
abilistic behavior can be formalized using stochastic games. Stochastic games can be
seen as an extension of MDPs where the control over states is divided between several
players. Typically, we are interested in the resolution of the nondeterminism that al-
lows a certain player to achieve its objective despite possibly hostile actions of other
players.

2.4. Design the Controller

There are different techniques that can be used to design a controller (in control en-
gineering terms: to do control synthesis). These techniques differ in the amount of
information required to set up the control strategy, in the design process itself, and in
the guarantees that they can offer [Åström and Murray 2008].
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The technique that requires the least amount of information is called synthetic de-
sign. Synthetic design consists of taking predesigned control blocks and combining
them together. It often relies on the experience of the control specialist, which looks
at experiments performed on the system to be controlled and decides which blocks are
necessary. For example, when the output signal is very noisy, a block to be added could
be a filter to reduce the noise and capture the original signal. Synthetic design usually
starts with a basic control block and adds more to the system as more experiments are
performed. Although the information required to set up the control strategy is very
low, the expertise necessary to effectively design and tune such systems is high, and
both controller design experience and domain-specific knowledge are required. Despite
not requiring much information, the formal guarantees that this technique offers are
limited [Boyd et al. 1990]. This is due to the empirical nature of the controller design,
where trial and error is applied and elements are added and removed. The main obsta-
cle to formal guarantees is the interaction between the added elements, which is hard
to predict a priori.

The second technique is a variation of the first one. It is based on the selection of a
controller structure and it is often called parameter optimization. The only difference
is that the choice of the controller parameters is often based on optimization strategies
or on analytical tuning methods [Åström and Murray 2008].

The last technique is often referred as analytical design, and it is based on the solu-
tion of an analytical problem. The amount of necessary information greatly increases,
since a model of the controlled entity is required. Based on the equation-based model,
the controller synthesis selects a suitable equation to link the output variables to the
control variables. Depending on which analytical problem is used (the optimization
of some quantities, the tracking of a setpoint, the rejection of disturbances), different
guarantees are enforced with respect to the controlled system. In some cases, this pro-
cess can be automatized and analytical control synthesis can sometimes be used with
domain-specific knowledge but without prior control expertise [Filieri et al. 2014]. This
generally imposes limitations on the models to be used and on the obtained guarantees,
and not all the control problems can be formulated in such a way that the solution can
be derived automatically.

In control theory, controllers can be divided into two main classes: time-based and
event-based controllers. The class of time-based controllers has been studied for many
years and can be further divided into continuous-time and discrete-time controllers.
Given the nature of software systems, discrete-time controllers—where signals are not
continuous, but discrete—seem to be a better fit for control of software systems [Diao
et al. 2005]. Nonetheless, there has been some effort in using continuous time models to
represent and control software entities [Tribastone 2013]. In this class, the controller
is an equation-based system that acts at prespecified time instants. When these time
instants are not prespecified but depend on external inputs from the system, the con-
troller belongs to the second class and it is an event-based controller. To complement
these two classes, rule-based systems are often considered as a third, separate type of
controllers. In control terms, rule-based—or knowledge-based—systems are a differ-
ent paradigm that shares little with “classical” control. However, they have often been
exploited to build self-adaptive software, and therefore we decided to include them in
our control taxonomy.

2.5. Prove Properties of the Closed-Loop System

The properties provided by control-theoretical-designed adaptation strategies have
been analyzed both from the software engineer perspective [Villegas et al. 2011;
Filieri et al. 2014] and from the control engineer perspective [Diao et al. 2006; Parekh
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et al. 2002]. Generally speaking, a control-based adaptation strategy would provide the
properties it is designed for. For example, a control system that acts on the length of a
key for an encryption algorithm is able to provide a different level of security. Taking
the control perspective here, we focus on the translation of control properties into the
corresponding software engineering ones. A control system usually pursues four main
objectives:

—Setpoint tracking. The setpoint is a translation of the goals to be achieved. For
example, the system can be considered responsive when its user-perceived latency
is below 1 second. The setpoint here is the value of 1 second for the maximum
user-perceived response time. In general, the self-adaptive system should be able to
achieve the specified setpoint whenever this setpoint is reachable. If the setpoint is
changed during the lifetime of the software, the controlled system should react to
this change and make sure that the new setpoint is reached. Whenever the setpoint
is not reachable, the controller should make sure that the measured value y(k) is as
close as possible to the desired value ȳ(k).

—Transient behavior. Control theory guarantee not only that the setpoint is reached
but also how this happens. The behavior of the system during the initialization phase
or when an abrupt change happens is usually called the “transient of the response.”
For example, it is possible to enforce that the response of the system does not oscillate
around the setpoint but is always below (or above) it.

—Robustness to inaccurate or delayed measurements. Oftentimes, in a real system,
obtaining accurate and punctual measurements is very costly, for example, because
the system is split in several parts and information has to be aggregated to provide
a reliable measurement of the system status. The ability of a controlled system (in
control terms a closed-loop system composed by a plant and its controller) to cope with
nonaccurate measurements or with data that is delayed in time is called robustness.
The controller should behave correctly even when transient errors or delayed data is
provided to it.

—Disturbance rejection. In control terms, a disturbance is everything that affects the
closed-loop system other than the action of the controller. For example, when a virtual
machine provider places a machine belonging to a different software application onto
the same physical machine as the target software, the performance of the controlled
software may change due to interference [Govindan et al. 2011]. Disturbances should
be properly rejected by the control system, in the sense that the control variable
should be correctly chosen to avoid any effect of this external interference on the goal.
In the video encoding example, the controller should be able to distinguish between
a drastic change of scene (like the switch between athletes and commentators in a
sport event) and a temporary slowdown due to the switch between speakers in a
conference recording. In the virtual machine example, the controller should be able
to distinguish between a transient migration that is slowing down the software for a
limited period of time and a persistent colocation that requires action to be taken to
guarantee the goal satisfaction.

These high-level objectives have counterparts in control terminology and their sat-
isfaction can be mapped into the “by design” satisfaction of the following properties
[Diao et al. 2006; Stein 2003; Villegas et al. 2011]:

—Stability. A system is asymptotically stable when it tends to reach an equilibrium
point, regardless of the initial conditions. This means that the system output con-
verges to a specific value as time tends to infinity. This equilibrium point should
ideally be the specified setpoint value.
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—Absence of overshooting. An overshoot occurs when the system exceeds the setpoint
before convergence. Controllers can be designed to avoid overshooting whenever
necessary. This could also avoid unnecessary costs (e.g., when the control variable is
a certain number of virtual machines to be fired up for a specific software application).

—Guaranteed settling time. Settling time refers to the time required for the system to
reach the stable equilibrium. The settling time can be guaranteed to be lower than
a specific value when the controller is designed.

—Robustness. A robust control system converges to the setpoint despite the underlying
model being imprecise. This is very important whenever disturbances have to be
rejected and the system has to make decisions with inaccurate measurements.

These four properties can be analytically guaranteed, based on the mathematical
definition of the control system and of the software. A self-adaptive system designed
with the aid of control theory should provide formal quantitative guarantees on its
convergence, on the time to obtain the goal, and on its robustness in the face of errors
and noise.

In the case of discrete time control systems depicted in Figure 2, these properties can
be proved analytically. For more details, the reader is referred to Filieri et al. [2015b],
which treats the matter with a software engineering example, and Åström and Murray
[2008] for the control treatise.

Whenever the desired properties are not satisfied, one can step back in the design
process and design a different controller, as discussed in Section 2.4. In some other
cases, the model can be refined or a more comprehensive model can be used, as dis-
cussed in Section 2.3. The use of a more complex model can capture a part of the
self-adaptive software system that can be necessary to provide formal guarantees on
the time behavior of the system. Finally, in some cases, one can go back and add a
different knob, as discussed in Section 2.2, to have better control over the goals of the
software system.

2.6. Implement and Integrate the Controller

The next step after the controller design is its implementation and integration with
the system under control. Although this step appears to be quite straightforward, it
has also been called “the hard part” [Hellerstein 2009].

One of the main problems is that the implementation team (software engineers)
often works independently from the control team (control experts) [Liu et al. 2004].
The transition from control algorithms, which is typically in the form of formulas
or simulation results, into software is a nontrivial process. It involves many ad hoc
decisions, not only in the controller implementation itself (e.g., types of state variables),
but also in the implementation of the accompanying code that is responsible for the
integration. This becomes particularly challenging in the case of remotely distributed
systems.

Regardless of the specific implementation technology and the degree of automation
in translating the control algorithm to runnable code, there are some recurring issues
in every controller implementation attempt. Namely:

—Actuator saturation occurs when the system under control is unable to follow the
output from the controller. This happens when a control knob is fully engaged. In
classical control, actuator saturation is a direct result of a physical constraint (e.g., a
valve can only open up to a certain point and not more); in software systems control,
similar constraints can be observed as well (e.g., the number of servers used by the
system under control cannot exceed the number of available servers in the cluster).
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—Integrator windup is a direct consequence of the actuator saturation and occurs
in controllers with integral terms (the I term in a PID controller). During actuator
saturation, the integral control accumulates significant error, which causes a delay in
error tracking when the system under control recovers to the point that the actuator
is no longer saturated. Therefore, a conditional integrator (or integrator clamping)
should be used to avoid the windup.

—Integrator preloading is similar to integral windup and can occur (1) during system
initialization or (2) when there is a significant change in the setpoint of the controller.
In both cases, the integral term should be preloaded with a value that would smooth
the setpoint change.

Apart from dealing with the common problems presented previously, the controller
implementation has to be robust. Common mechanisms to achieve robustness are
(1) determination and disregard of invalid input signals (e.g., out-of-bound values),
(2) account for actuator delays by preventing duplicate control actions, and (3) graceful
degradation in case of invalidation of design-time assumptions (e.g., when the actual
computation and communication jitter is larger than assumed by controller designers).

Controller Integration. After a controller has been implemented, it has to be inte-
grated with the rest of the system. This includes wiring all the responsible components
together and ensuring that the sensor data are consistently collected across all the
sources and that adaptation actions are correctly coordinated.

When integrating a controller into a system, there are two basic approaches to follow
with respect to the separation of concerns between the controller and the system under
control [Salehie and Tahvildari 2009]: (1) intertwine the control logic with the system
under control—internal control, and (2) externalize the control logic into a “controller”
component and use sensor and actuator probes (if available) to connect the controller
and the system under control—external control.

The external control provides a clear separation of concerns between the application
and adaptation logic. Its advantages with respect to maintainability, substitutability,
and reuse of the adaptation engine and associated processes make it the preferred
engineering choice [Salehie and Tahvildari 2009]. It also allows building adaptation on
top of legacy systems where the source code might be unavailable. The main drawback
of external control is, however, in assuming that the target system can provide (or can be
instrumented to provide) all the necessary endpoints for its observation and consequent
modification. This assumption seems reasonable since many systems already provide
some interfaces (e.g., tools, services, APIs) for their observation and adjustment [Garlan
et al. 2004b] or could be instrumented to provide them (e.g., by using aspect-oriented
approaches). There is also a potential performance penalty as a consequence of using
an external interface or running some extra components and connectors that cannot be
tolerated in some resource-constrained environments (e.g., in embedded devices where
memory footprint and transmission delays matter).

The separation of concerns in the external approach also makes it possible to provide
more systematic ways for control integration by leveraging model-driven engineering
techniques and domain-specific modeling [Vogel and Giese 2014; Krikava et al. 2014].
Essentially, these solutions raise the level of abstraction on which the feedback control
is described and therefore make it amenable to automated analysis as well as complete
integration code synthesis.

2.7. Test and Validate the System

The next step involves the testing and validation of the controller. This can be divided
into two broad categories. On one hand, one needs to test the controller itself and check
that it does the correct thing. A part of this is already done with proving the properties
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of closed-loop systems. However, this does not test the controller implementation. The
second part is the verification of the controller together with the system under control,
to understand if the controller can deliver the promised properties. This should be
true, in general, but there might have been model discrepancies that have been over-
looked during the design process; therefore, validation is needed despite the analytical
guarantees given by control theory.

Static analysis and verification techniques can be used to assess both the confor-
mance of the controller code to its intended behavior and the absence of numerical
errors due to the specificity of different programming languages and execution archi-
tectures. For example, modern SMT tools can be used at compile time to verify the
occurrence of numerical problems and automatically provide fixes, guaranteeing the
final results of the procedures to achieve a target accuracy [Darulova and Kuncak
2014].

Also, there is a growing area of verification theories and tools focusing on real anal-
ysis and differential equations. The most recent advancements include satisfiability
modulo ODEs and hybrid model checking. The former can be used to verify if a system
described by means of a set of differential equations can reach certain desirable (or un-
desirable) states within a set finite accuracy [Gao et al. 2013]. In terms of scalability,
SMT approaches over ODEs have been proved to scale up to hundreds of differential
equations. Hybrid model checking is instead focused on the verification of properties
for hybrid systems, which can in general be defined as finite automata equipped with
variables that evolve continuously according to dynamical laws over time. These for-
malisms are, for example, useful to match different dynamical behaviors of a system
with its current configuration, and can be valuable especially to study and verify switch-
ing controllers and the coexistence of discrete-event and equation-based ones. Current
hybrid model checkers are usually limited to linear differential equations [Henzinger
et al. 1997; Franzle and Herde 2007].

Once the controller is verified by itself, it is necessary to verify the controller im-
plementation together with the system under control. This can be done by means of
extensive experiments. Some types of analysis are based on systematic testing. One
common way to validate a controller implementation and its system under control is to
show statistical evidence, for example, using cumulative distribution functions, as done
in Klein et al. [2014]. In this and similar work, some experiments are conducted, in a
lower number with respect to the rigorous analysis previously mentioned. Based on the
results of these experiments, one can compute the empirical probability distributions
of the goals.

It is also possible to use tools like the scenario theory [Campi and Garatti 2011;
Papadopoulos et al. 2016] to provide probabilistic guarantees on the behavior of the
controlled system together with the control strategy. The performance evaluation can
be formulated as a chance-constrained optimization problem and an approximate so-
lution can be obtained by means of the scenario theory. If this approach is taken, the
performance of the software system can be guaranteed to be in specific bounds with a
given probability.

3. CONTROLLER TAXONOMY

This section discusses a selection of different control strategies and concepts that can be
applied for the solution of software adaptation problems. While a comprehensive survey
of all the techniques established by control theory is beyond the scope of this paper, a
discussion of the principal classes and dimensions of control solutions is provided as
a reference for casting common software adaptation problems in the framework and
terminology of control. We first start with a discussion on the control loop types in
Section 3.1. We then delve into the implementation of different types of controllers.
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Section 3.2 discusses the time-based controllers, Section 3.3 the event-based ones,
and Section 3.4 the knowledge-based ones. Finally, Section 3.5 discusses uncertainty
management strategies that can complement the mentioned techniques.

3.1. Loop Type

Loop-based controllers are defined by the way in which they incorporate feedback and
system measurement. We identify four main types:

—Open-loop control: The control signal is based on a mathematical model, without any
measurement. This scheme is used only with perfect knowledge of the system and
outside environment—it cannot react to unforeseen disturbances.

—Feed-forward control: This approach is similar to open loop but includes measure-
ments of disturbances. The controller rejects these disturbances’ effects on the sys-
tem. Perfect knowledge of the system model is assumed, and hence, unmeasurable
disturbances cannot be rejected.

—Feedback control: This is the most-used structure for the control loop. The control
input is computed as a function of the difference between measured system behavior
and desired behavior. This scheme is usually able to handle unforeseen disturbances
and uncertainty in the system. In addition to rejecting unmeasured disturbances,
feedback control can also significantly change the behavior of the controlled system
(e.g., stabilizing an (open-loop) unstable system).

—Feedback and feed-forward control: The control is computed as in the feedback case,
but disturbance measurement is also incorporated to actively reduce disturbances’
effects. The feedback and feed-forward controllers must be designed together.

More advanced control schemes are discussed in the literature [Scattolini 2009] and
have been used to control computing systems [Patikirikorala et al. 2012].

3.2. Time-Based Control Techniques

This section reviews the most important time-based control techniques, providing hints
on when a particular technique should be used. The focus is mainly on discrete-time
control techniques, since these are the most suited for being applied for designing
self-adaptive software systems.

3.2.1. Classical Feedback Control. One of the simplest controllers is the bang-bang con-
troller (or on-off controller) [Artstein 1980]. The control signal can assume only two
values: {−1, 1} or {on,off}. Due to its simplicity, it was widely studied especially in
optimal control problems [Hermes and Lasalle 1969].

Pole placement [Wittenmark et al. 2002] is a special case of state-feedback control that
assumes all system states are measured and used to compute the control signal. Since
the overall state vector cannot always be measured, this technique is typically combined
with measurements used to reconstruct the states’ values. To use this technique, a
state-space system model must be available and some modifications are required in
order to account for possible disturbances and model uncertainties.

A special case of pole placement design is so-called deadbeat control [Wittenmark
et al. 2002]. This strategy drives the controlled output to the desired value in at most
n time units, where n is the order of the controlled process.

The most common controller, however, is the PID controller [Åström and Hägglund
2006]. This type of controller covers about 90% [Wittenmark et al. 2002] of the in-
dustrial applications, due to its simplicity and flexibility. It is based on a very sim-
ple principle, which is to compute the control input u(k) (see Figure 2) according to
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the law

u(k) = u(k − 1) + K�e(k)︸ ︷︷ ︸
proportional

+ Kh
Ti

e(k)
︸ ︷︷ ︸
integral

+ KTd

h

[
�e(k) − �e(k − 1)

]
︸ ︷︷ ︸

derivative

, (1)

where e(k) = ȳ(k) − y(k) is the error between the desired and the actual behavior of
the system, �e(k) = e(k) − e(k − 1) is the variation of the error, h is the sampling time
of the controller, and K, Ti, and Td are the three parameters of the PID controller.
Note that Equation (1) is a PID control law in velocity form (cf. Åström and Hägglund
[2006]). The three terms in the control law of Equation (1) serve different purposes:.

—A higher proportional gain K generally increases the response time of the closed-loop
system but makes it unstable.

—The integral term can mitigate steady-state deviations from the setpoint that a
purely proportional controller cannot handle but can introduce overshoot in the
system response.

—A derivative term improves response time and stability but may amplify the influence
of measurement noise.

PID controllers are popular as they do not require an explicit system model but can be
tuned on the basis of experiments and established heuristics [Åström and Hägglund
2006]. On the other hand, PID control does not generalize easily to MIMO systems.

An alternative technique is loop shaping. The control designer decides the closed-loop
transfer function’s shape and designs the controller accordingly. The desired closed-loop
transfer function is typically related to some time-domain specifications, for example,
the required settling time or the maximum disturbance amplification.

3.2.2. Optimal Control. In optimal control, the control value is obtained so as to min-
imize a cost function, possibly subject to some constraints. Typically, the objective is
to maximize control performance, given prescribed guarantees [Morari and Zafiriou
1989; Zhou et al. 1996]. Whenever the cost function is a quadratic function and the
constraints contain linear first-order dynamic constraints, the problem can be classi-
fied as a Linear Quadratic (LQ) optimal control problem. A special case is the Linear
Quadratic Regulator (LQR) [Skogestad and Postlethwaite 2007].

A particularly successful heuristic for optimal control under constraints is Model
Predictive Control (MPC) [Maciejowski 2002; Camacho and Alba 2013]. MPC predicts
the future behavior from the current system state under a particular control action
and selects the input sequence that minimizes the chosen cost function. Only the first
step of that input sequence is applied and at the next time step the new system state
is determined and the process repeated. This control strategy is also called Receding
Horizon Control (RHC).

Such techniques are widely used in industry, especially when physical constraints
must be enforced. A good system model is required for MPC. Computational resources
can be an issue, as solving the optimization problem for larger (or nonlinear) sys-
tems can take significant time. Variants exist that deal with disturbances and model
uncertainties in different ways [Bemporad and Morari 1999; Goodwin et al. 2014].

Another class of optimal controllers is the H∞ control [Skogestad and Postlethwaite
2007]. This class is important in many applications in which guarantees on the
obtainable performance are crucial. While mature tools exist that can automatically
synthesize H∞ controllers, mathematical expertise is required to understand the
advantages and limitations of H∞ control.
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3.2.3. Adaptive Control. Adaptive control is a class of techniques that allows a controller
to adapt its behavior to time-varying or uncertain structural properties [Åström and
Wittenmark 2013]. Adaptive controllers modify the control law at runtime to adapt
to the discrepancies between the expected and the actual system behavior. Usually,
adaptation mechanisms are built on top of existing controllers and modify the con-
troller’s parameters or select the most effective controller to form a set of possibly
structurally different ones, depending on the detected operation point [Åström and
Wittenmark 2013]. The control task is, however, still performed by the controller. Most
of the approaches using adaptive control for self-adaptive software perform parametric
adaptation; that is, the structure of the controller is not changed, only the values of its
parameters according to an adaptation policy.

An adaptive controller combines an online parameter or system state estimator with
a control law designed from the prior knowledge about the system. The way the es-
timates are combined with the control law gives rise to different approaches. Gain
scheduling estimates the system’s current operating region and then changes the con-
troller’s parameters based on that estimate. Model Identification Adaptive Controllers
(MIACs) use online identification techniques to estimate a good system model and mod-
ify the controller accordingly. Model Reference Adaptive Controllers (MRACs) change
the controller’s parameters according to the discrepancy between the expected and
actual system behavior with respect to a reference model.

The term “adaptive control” usually refers to a specific class of adjustment mech-
anisms enabling controllers to face unexpected behavior. This is very different, and
usually more complex with respect to many “adaptation” policies that are used in
software systems. Unfortunately, the two terms are very close but distinct, making
communication between the two communities difficult.

3.2.4. More Complex Techniques. Most robust control methods typically deal with un-
certainties in a “worst-case” sense, providing strong guarantees under fairly strong
assumptions. Stochastic control, on the other hand, tries to minimize the influence
of uncertainties, providing probabilistic guarantees on the satisfaction of its require-
ments (e.g., the system will satisfy achieve its goals with a probability larger than a
certain threshold) [Kumar and Varaiya 1986]. The benefit is that assumptions on the
uncertainties are generally much weaker; for example, instead of assuming bounded
disturbance signals, only an assumption on the probability distribution is necessary.

The control techniques outlined in the previous section have mostly been developed
for linear systems because of the complete mathematical theory existing for this model
class. Since most real systems are nonlinear, nonlinear control is an active field in
research and application [Khalil 2015]. Since nonlinearities can take so many different
forms, nonlinear control methods are often tailored to specific model structures. Many
of the methods designed for linear systems have also been applied to nonlinear systems,
for example, nonlinear MPC [Grüne and Pannek 2011]. PID controllers in particular
are often applied to nonlinear systems because of their easy tuning and good robustness
properties. Additionally, many nonlinear systems only operate under certain conditions,
often allowing one to linearize the nonlinear dynamics around such an operating point
and working with the resulting linear model.

A particular class of nonlinear models that may be especially relevant in the context
of software systems is so-called hybrid systems [Goebel et al. 2012; Labinaz et al. 1997].
They combine continuous state dynamics on a continuous- or discrete-time scale (e.g.,
number of requests in a queue) with intermittent discrete events (e.g., availability of
more computing resources). Analysis and control of hybrid systems have to reconcile
the continuous state dynamics with abrupt discrete changes in the system’s state
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or behavior. Despite hybrid systems gaining growing interest for modeling software
behaviors [Zhan et al. 2013], verifying the properties of (controlled) hybrid systems is
particularly challenging [Alur 2011], with restrictive decidability results for the more
general classes of hybrid models [Henzinger et al. 1998]. A special case of a hybrid
controller is the so-called switching controller [Liberzon 2003]. The idea of switching
control is similar to adaptive control, but instead of modifying the parameters of the
controllers, a switching policy decides how to switch between controllers of different
structures. In software engineering terms, it is a structural adaptation that changes
the control component itself. For a broader overview of the current state of the art on
hybrid control see, for example, Lunze and Lamnabhi-Lagarrigue [2009].

3.3. Event-Based Controllers

Event-based controllers react to specific events by making decisions about the current
system. This class includes controllers entirely designed in the event space, for example,
logic controllers, and controllers that are event-based extensions of a continuous- or
discrete-time control. Here, we briefly analyze this last class and then discuss “pure
event” strategies.

In the control domain, there is a distinction between event-triggered and self-triggered
control strategies [Heemels et al. 2012; Åström 2008; Lunze and Lehmann 2010]. An
initial effort was devoted to studying what happens when a controller designed to
be executed periodically is instead called when a certain event happens, for example,
when a performance drop is experienced. More recently, the control community has
put some effort into the systematic design of event-based implementations of feedback
control laws [Tabuada 2007; Heemels et al. 2008; Leva and Papadopoulos 2013]. Event-
triggered controllers are based on constant monitoring of some triggering conditions
that could lead to the execution of the controller code. The controller can be designed
with any of the mentioned strategies. On the contrary, self-triggered controllers are
not based on constant monitor, but the controller, before terminating its executions,
programs a new wakeup time [Camacho et al. 2010; Leva and Papadopoulos 2013].
Whenever the monitor is extremely expensive or the verification of the triggering
condition is nontrivial, self-triggered control strategies can offer a better alternative to
event-based ones. However, it must be noted that the design of the controller is often
conducted with the same techniques used for continuous- and discrete-time control
strategies (see Section 3.2).

In the computer science domain, the problem of event-based controller synthesis
has been defined [Ramadge and Wonham 1989; Pnueli and Rosner 1989]. Event-based
controller synthesis can be abstractly defined as follows: given a model of the assumed
behavior of the environment (E) and a system goal (G), controller synthesis produces an
operational behavior model for a component M that when executing in an environment
consistent with the assumptions results in a system that is guaranteed to satisfy the
goal—that is, E‖M |= G.

The main motivation for event-based controllers in self-adaptive systems is the need
for high-level adaptation strategies and decision-level behavior plans. Thus, event-
based controllers, in contrast to discrete-time ones, entail complex strategies to achieve
high-level complex goals (e.g., architectural adaptation) that require a nontrivial com-
bination of actions. Further, event-based controllers provide formal guarantees that
ensure goals are satisfied.

To apply event-based controller synthesis requires having formal specification of the
environment assumptions and system goals. Temporal logics (e.g., LTL [Pnueli 1977])
are a widely adopted formalism to specify environment assumptions and system goals
in computer science, and more specifically in the software engineering community.
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Temporal logics not only provide a framework that formalizes the entailment (|=)
operator, central to the controller synthesis problem, but also allow for declarative
and precise descriptions of high-level complex goals. Many have addressed the prob-
lem of synthesizing a controller for safety goals (e.g., Ramadge and Wonham [1989]),
while others have introduced approaches for general LTL formulas (e.g., Pnueli and
Rosner [1989]). Here we report on a number of approaches that incorporate (and thus
guarantee) different subsets of LTL as system goals.

A number of architectural approaches for self-adaptive systems [Kramer and Magee
2007; Garlan et al. 2004a; Dashofy et al. 2002; Batista et al. 2005; Oreizy et al. 1999;
Kang and Garlan 2014; Inverardi and Tivoli 2003; Braberman et al. 2015] have been
proposed. At the heart of many such adaptation techniques, there is a component
capable of designing at runtime a strategy for adapting to the changes in the envi-
ronment, system, and requirements (e.g., Braberman et al. [2015]). Interestingly, no
mechanisms for generating adaptation strategies is prescribed. In fact, depending on
the knowledge on the environment and the type of goal, a wide range of event-based
controller synthesis techniques could be applied.

There are a large variety of controller synthesis techniques [Pnueli and Rosner
1989] that guarantee the satisfaction of safety and even liveness [Piterman et al. 2006;
D’ippolito et al. 2013] requirements within the constraints enforced by the problem
domain, within the capabilities offered by the system, and under fairness and progress
assumptions on the controller’s environment.

Traditional techniques for controller synthesis are Boolean in the sense that a con-
troller satisfies a set of goals or it does not. This two-valued view is limiting as, in
general, there are multiple ways to satisfy a set of goals, leading to several levels
of satisfaction with respect to certain preference notions—that is, quality attributes.
Typically, such quality attributes are modeled by introducing a quantitative aspect to
the system specification, imposing a preference order on the controllers that satisfy
the qualitative part of the specification (e.g., Chatterjee et al. [2015]). Thus, the event-
based synthesis procedure has both qualitative and quantitative aspects, the former
modeling goals the controller must satisfy and the latter modeling the properties of the
dynamical behavior exhibited by the system that are to be, for example, maximized.

In some cases, the environment behavior is stochastic. Event-based controller syn-
thesis techniques for such models are normally based on the notion of stochastic
games [Chatterjee et al. 2004]. The problem of stochastic synthesis has qualitative
and quantitative components. The qualitative component is to answer if a controller
can guarantee the satisfaction of a goal or if it has a positive probability of achieving
the goal [Chatterjee et al. 2003]. The quantitative component, on the other hand, is to
answer the exact value of the probability a controller has to fulfill the goals [Chatterjee
et al. 2015]. Stochastic control problems have various forms depending on the type of
environment the controller must interact with. When the controller is meant to inter-
act with a purely stochastic environment, 11/2 player games are used. Such games can
be expressed with MDPs [Filar and Vrieze 1996; Puterman 1994]. In cases where we
model the unknown behavior as stochastic (e.g., failures) and known properties of the
environment as adversarial, 21/2 player games are required. In such games, we have
one player (the controller) playing against another one (the environment) and both
interact with a third player who plays according to a certain probabilistic distribution.

3.4. Knowledge-Based Controllers

Conventional controllers (e.g., equation-based or adaptive controllers) can be designed
following established mathematically grounded processes, guaranteeing the effective-
ness of the controllers, including their stability, settling time, or robustness. However,
a correct design and the understanding of the underlying theory may require specific
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mathematical knowledge, not mastered by most software engineering. Furthermore,
modeling and controlling systems exhibiting particularly complex nonlinear behaviors
may require a good degree of expertise, since standard controller design processes
seldom apply to them off the shelf.

Knowledge-based controllers allow overcoming the difficulties of formalizing both a
system behavior and its control law. Indeed, a system behavior, including its knobs, its
outputs, (optionally) its internal state, and the effects of each possible control action,
are represented in a form suitable for formal deduction and inference by a reasoning
engine. The reasoning engine is in charge, then, of deciding the most appropriate
control actions based on the knowledge about the system augmented with monitoring
information about the current state of execution. Due to the higher level of abstraction
and often the lack of knowledge about the internal machinery of the reasoning engine,
proving certain properties of these controllers might be harder [Levine 2010].

There are several possible choices for the reasoning engine and consequently for the
representation of the knowledge base. In the following, we will briefly recall the basic
principles behind two popular approaches: fuzzy rule-based reasoning and case-based
reasoning.

3.4.1. Fuzzy Rule-Based Control. Fuzzy control is grounded in fuzzy logic, which is, in its
simplest form, an extension of propositional logic where each variable may have a de-
gree of truth ranging in the interval [0, 1] ∩ R [Yager and Zadeh 2012]. The reasoning in
this framework is based on fuzzy inference. Fuzzy inference is the process of mapping
a set of control inputs to a set of control outputs through a set of fuzzy rules. The main
application of fuzzy controllers is for types of problems that cannot be represented by
explicit mathematical models due to high nonlinearity of the system. Instead, the po-
tential of fuzzy logic lies in its capacity to approximate that nonlinearity by knowledge
in a similar way to the human perception and reasoning. The explicit knowledge base
(encompassing the user-defined fuzzy rules) component is one of the unique aspects of
such type of controllers. Instead of sharp switching between modes based on thresh-
olds, control output changes smoothly from different regions of behavior depending on
the dominant rules.

Fuzzy controllers have been applied in the context of virtualized resource manage-
ment [Xu et al. 2007; Rao et al. 2011; Lama and Zhou 2013] and cloud computing
[Wang et al. 2015; Jamshidi et al. 2014]. For instance, the inputs to such controllers
may include the workload level (w) and response time (rt) and the output may be
the scaling action (sa) in terms of increment (or decrement) in the number of VMs.
The design of a fuzzy controller, in general, involves the following tasks: (1) defining
the fuzzy sets and membership functions of the input signals and (2) defining the rule
base that determines the behavior of the controller in terms of control actions using
the linguistic variables defined in the previous task. The very first step in the design
process is to partition the state space of each input variable into various fuzzy sets
through membership functions. Each fuzzy set is associated with a linguistic term
such as “low” or “ high.” The membership function, denoted by μy(x), quantifies the
degree of membership of an input signal x to the fuzzy set y (cf. Figure 3). As shown,
three fuzzy sets have been defined for the workload to achieve a reasonable granularity
in the input space while keeping the number of states small to reduce the set of rules
in the knowledge base.

The next step consists of defining the inference machinery for the controller. Here
we need to define elasticity policies in terms of rules: “IF (w is high) AND (rt is bad) THEN
(sa = +2),” where the output function is a constant value. Note that depending on the
problem at hand, this can be any finite discrete set of actions. For the definition of the
functions in the rule consequents, the knowledge and experience of a human expert
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Fig. 3. Fuzzy membership functions for auto-scaling variables.

are generally used. In the situations where no a priori knowledge for defining such
rules is assumed, a learning mechanism can instead be adopted [Lama and Zhou 2013;
Jamshidi et al. 2016].

Once the fuzzy controller is designed, the execution of the controller is composed of
three steps: (1) fuzzification of the inputs, (2) fuzzy reasoning, and (3) defuzzification of
the output. Fuzzifier projects the crisp data onto fuzzy information using membership
functions. Fuzzy engine reasons on information based on a set of fuzzy rules and
derives fuzzy actions. Defuzzifier reverts the results back to crisp mode and activates
an adaptation action. The output is calculated as a weighted average:

y(x) =
N∑

i=1

μi(x) × ai, (2)

where N is the number of rules, μi(x) is the firing degree of the rule i for the input
signal x, and ai is the consequent function for the same rule.

3.4.2. Case-Based Reasoning. Case-based reasoning (CBR) is based on the recognition
of similar cases from previous experience [Qian et al. 2014]. The reasoning process
comprises the following steps:

(1) Matching the new situation to prior cases
(2) Identifying the closest matches
(3) Combining the closest matches to find a solution
(4) Storing the new case and the solution in the case base

Given an initial set of cases, a CBR grows its experience while operating at runtime,
making faster decisions for known cases by reusing what has “ worked before” [Lambert
2001] instead of recomputing complex interpolations among the closest cases.

3.4.3. Learning Knowledge-Based Controllers. The lack of knowledge about the system
or some of its parts during design may limit the effectiveness of a knowledge-based
controller. For example, (de)fuzzification mechanisms can be retuned or new inference
rules can be added to the controller after additional knowledge is gathered at runtime.
Machine-learning techniques have been applied for this purpose. A notable example is
the use of reinforcement learning to automatically build a rule set for a fuzzy controller
based on the evaluation of explorative adaptation action selections [Tesauro 2007;
Jamshidi et al. 2016; Lama and Zhou 2013].

3.5. Dealing with Uncertainty in Control Strategies for Adaptation

Independently of the particular model-based control technique that is adopted, the first
task in controller design is modeling the system to be controlled. This system, however,
may be very complex and its dynamics may not be completely understood. Developing
accurate system models over an operating range is a challenging task [Åström and
Murray 2008], especially for computing systems [Hellerstein et al. 2004; Maggio et al.
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2012; Leva et al. 2013; Papadopoulos et al. 2015]. Even if a detailed mathematical
model is available, it may be complex and make the controller design challenging and
computationally expensive [Morari and Zafiriou 1989]. Of course, the more complete
and accurate the model, the more robust the controller is. Thus, there is tension between
the complexity of the model and the controller’s robustness to unmodeled or uncertain
characteristics.

Besides the challenge of determining an appropriate level of abstraction to balance
the simplicity of the model and the amount of information available to the controller,
engineering self-adaptive software requires a peculiar attention to modeling of uncer-
tain phenomena. Uncertainty can be at the same time the driver for and the outcome
of adding self-adaptation capabilities to a system. The research community devolved
extensive efforts to studying and modeling uncertainty in self-adaptive software (see,
e.g., Esfahani and Malek [2013], Esfahani et al. [2011], Cheng and Garlan [2007],
Ramirez et al. [2012a, 2012b], Giese et al. [2014], Bencomo and Belaggoun [2014],
Alessia Knauss et al. [2016], and Cheng et al. [2009]) and elicited three main sources
for it:

(1) Requirements can change over time and have different priorities for different
users [Baresi et al. 2006]; specifications are incomplete, and designs can inten-
tionally be left open ended [Letier et al. 2014].

(2) Software interacting with physical systems, including unreliable hardware infras-
tructures, has possibly to deal with an epistemic uncertainty intrinsic in some
physical phenomena (e.g., a GPS localization device outputs a distribution over
likely positions) [Zhang et al. 2016].

(3) Software deployed in the wild has to tackle interactions with a variety of users,
whose behavior is hardly predictable and often changes over time [Cámara et al.
2015].

On the other hand, the very addition of adaptation capabilities to software, if not
properly designed, may introduce additional uncertainty about its behavior. This may
compromise the overall dependability of the self-adaptive systems [Calinescu et al.
2012] and is the primary driver for developing principled design techniques and qual-
ity assurance practices. We so far described the mathematical principles that control
theory offers to design reliable-by-design controllers.

In the remainder of this section, we will first discuss three common ways for dealing
with uncertainty in control theoretical software adaptation, and then elicit a set of
tasks software engineers can be required to perform when dealing with uncertainty.

Dealing with uncertainty in control. There are different ways to deal with uncer-
tainty, including adaptive and robust control, probability theory, and fuzzy logic.

In classical control theory, the typical approach is to provide a model, possibly prob-
abilistic, of the uncertainty and to adopt a control technique that is conceived to be
robust against the modeled uncertainty. Possible approaches are then to deal with the
uncertainty following a worst-case scenario approach [Campi et al. 2009] (e.g., this is
the case of H∞ control) [Skogestad and Postlethwaite 2007] or to adapt the controller’s
behavior online, according to measured quantities on the system (e.g., adaptive con-
trol) [Åström and Wittenmark 2013].

When the uncertainty can be restricted to a known interval, one can also use interval
Markov models. Recently, several techniques have been developed [Chatterjee et al.
2008; Benedikt et al. 2013; Chen et al. 2013; Puggelli et al. 2013]. Typically, these
methods work by determining the extremal values a probabilistic parameter can take.
When the range of uncertainty is not known, one can opt for parametric Markov models
that construct a symbolic model that can later be evaluated with specific probabilities.
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Recent work includes methods from parametric model checking [Hahn et al. 2010;
Filieri et al. 2011a; Dehnert et al. 2015].

Finally, fuzzy logic controllers deal with uncertainty quantifying the ambiguity due
to the unmodeled underlying phenomena [Jamshidi et al. 2014]. Controllers based on
fuzzy theory are called fuzzy logic controllers [Jantzen 2013]. They are particularly
suited for nonlinear control and nonprobabilistic uncertainty [Mendel and Wu 2010].

Common tasks in dealing with uncertainty. The fact that many different ap-
proaches exist to deal with uncertainty is a figure of how difficult this problem is. In
fact, dealing with uncertainty raises a number of different challenges:

—Model selection. To enable tractable analysis, most mathematical models are inher-
ently approximate. While many phenomena can be modeled using probability theory
or analyzed using fuzzy logic, software designers must select appropriate models.

—Knowledge evolution. Typically adaptive software systems use some sort of adapta-
tion knowledge either in terms of analytical model or explicit adaptation rule for
controlling the underlying software systems. However, the model may drift at run-
time due to the changes in the assumptions on which the model is made. Some recent
work [Abbas et al. 2011; Jamshidi et al. 2016] investigated this challenge.

—Reasoning about lack of domain knowledge. Explicitly adding uncertainty to software
is an application-specific effort. Generic techniques for trading application speedup
and quality are still in their early stages. There are some solutions that address
uncertainty by learning parameters online. For instance, reinforcement learning
can explore the environment and pass knowledge to a controller for more effective
decision making [Hoffmann 2015].

—Reasoning about multiple sources of uncertainty. Even when individual uncertainty
sources are modeled using a single underlying theory (e.g., probability theory), it is
not clear how to combine different models to characterize the uncertainty of the com-
putation. Currently, combining multiple uncertainty models in a single application
requires careful, application-specific approaches. General methods for combining un-
certainty models is another key challenge.

—System adaptation. Given accuracy characterization of the approximate programs,
runtime systems can use this information for accuracy, performance, and energy
targets [Baek and Chilimbi 2010; Hoffmann et al. 2011; Samadi et al. 2014]. How-
ever, adaptively controlling accuracy in a systematic manner is still often an ad hoc
process. The work on more general methodologies is ongoing [Filieri et al. 2014;
Hoffmann 2014].

4. SOFTWARE ENGINEERING FOR CONTROL THEORY

The mathematical foundation of control theory has shaped its practical development:
the standard practice in the design and implementation of control systems is to devise
an ad hoc solution mathematically for each problem instance [Levine 2010] disregard-
ing, in a first place, implementation concerns. Whereas the mathematical derivation of
tailored controllers for complex problems may still require human expertise, software
engineering established principles and design techniques that are carving their way in
the design of control systems. In this section, we will sketch some of the directions in
which software engineering is shaping the design and implementation of software con-
trollers. These results can also ease the integration of control in self-adaptive software.

Domain-specific languages. The established approach to controller design and im-
plementation is the use of domain-specific languages. Development suites like Matlab
and Simulink, Modelica, and Ptolemy II [Eker et al. 2003], as well as less popular
ones like ACTRESS [Krikava et al. 2014] or EUREMA [Vogel and Giese 2014], provide
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domain-specific constructs to ease the formalization of dynamic models and automati-
cally generate executable code targeted at different hardware infrastructures. Despite
the success of these tools, the evolution of both sophisticated control techniques and
execution platforms is presenting unprecedented challenges. As an example, model
predictive control requires the solution of complex optimization problems during run-
time. Programmable and specialized hardware presents new opportunities for auto-
matically transforming and compiling domain-specific languages into platform-specific
ones, unleashing computational power beyond the reach of general-purpose architec-
tures. While preliminary ad hoc solutions exist (e.g., Kerrigan [2014] and Hartley et al.
[2014]), their generalization is still a concern for researchers in software engineering
and programming languages [Dubach et al. 2012]. Just-in-time compilation, generative
programming, and modular staging [Rompf and Odersky 2010] are growing in impor-
tance in software engineering and can change the shape of controller development, as
early results demonstrate [Ofenbeck et al. 2013; Kong et al. 2013].

Design patterns. Control theory developed common solution patterns for several com-
plex problems, usually involving multiple controllers. This goes under the term of “
control allocation strategies” [Levine 2010], and such strategies have clear semantic
similarities to design patterns in software engineering. The growing scale and com-
plexity of industrial control [Vyatkin 2013] are calling for control engineers to face new
software engineering problems and to start exploring specific design patterns [Sanz
and Zalewski 2003; Scattolini 2009]. To further improve in this direction, a deeper
cross-fertilization between software and control engineering is needed. On the other
hand, robotics and cyber-physical systems are offering a natural playground for this
encounter [Brugali 2007; Rajkumar et al. 2010].

Verification and validation of controller implementation. Although control theory
developed techniques to validate system models experimentally and in turn the the-
oretical effectiveness of their controllers, implementation may differ from its design.
Software engineering is playing a role in both producing correct-by-construction im-
plementations from the mathematical description of controllers [Kowshik et al. 2002;
Darulova and Kuncak 2014; Cai 2002] and defining specialized testing and verification
procedures [Darulova and Kuncak 2013; Ismail et al. 2015; Matinnejad et al. 2016;
Zuliani et al. 2010; Villegas et al. 2011; Camara et al. 2013].

Implementation of distributed control. Networked control systems are rapidly de-
veloping thanks to advances in both industrial automation and robotics [Yang 2006].
Software engineering developments in the fields of actor models and reactive pro-
gramming are supporting their implementation Liu et al. [2004], Muscholl [2015], and
Delaval et al. [2013]. However, to the best of our knowledge, no languages specific for
distributed control have been developed so far.

5. CONCLUSIONS AND OPEN RESEARCH CHALLENGES

Self-adaptation mechanisms for software systems require a formal grounding to ensure
their dependability and effectiveness. Control theory showed promising results for pro-
viding such grounding in a variety of situations. In this article, we elicited and discussed
a set of control strategies software engineering can glean from to define dependable
software adaptation techniques. Furthermore, we presented control theoretical results
under the light of common software development activities, from requirements formal-
ization to implementation and verification, to show how an understanding of each of
those activities can benefit from the understanding of control concepts.

Although not all software adaptation problems find a straightforward casting into
the control domain, the concepts and techniques proposed in this article can represent
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a core toolkit enriching the corpus of established solutions for self-adaptive software
design.

To conclude this work, in the reminder of this section, we elicit a first set of open
research challenges in developing controllable software. We divide these into two cate-
gories: challenges for software engineers and challenges for control engineers. For each
category, we first describe the overarching goal and then some key objectives that must
be met to achieve this goal.

5.1. The Software Engineering Perspective

Software engineers must create controllable software, that is, make control a first-class
design concern [Müller et al. 2008; Brun et al. 2009]. Software engineers will benefit
as controllable software permits formal analysis of its dynamic behavior. For example,
engineers who design controllable software can then mathematically reason about its
performance, energy, security, reliability, or other nonfunctional requirements—despite
the unpredictability and changeability of the environment.

The need for adaptive software that can change its own behavior in a changing en-
vironment has long been recognized [Cheng et al. 2009]. Controllable software is a
subset of adaptive software. While adaptive software can change its behavior, control-
lable software changes its behavior according to a set of well-founded mathematical
models whose dynamics can be formally analyzed. This section presents several objec-
tives that will help achieve the goal of creating controllable software.
Control design patterns. To make control techniques directly usable to software
engineers—without requiring a deep knowledge of control theory—the community can
work on identifying design patterns specific to control. This would allow for the defi-
nition of reusable solutions and easy communication of design choices; capturing the
similarities within classes of software adaptation problems solvable with control tech-
niques would allow a faster adoption of control from the early design stages. A top-down
approach to the definition of control design patterns would first identify controllers and
then determine the applications to which they are best suited (e.g., Filieri et al. [2014,
2015a]). A bottom-up approach would first find applications with feedback, then apply
control techniques, and finally generalize (e.g., Klein et al. [2014]).
Control smells. A code smell is “any symptom in the source code of a program that
possibly indicates a deeper problem” [Fowler and Beck 1999]. While code smells are not
bugs by themselves, they may indicate a design weakness. When a code smell is discov-
ered, an engineer must decide whether or not to redesign. Categorizing common code
smells and remedies allows engineers to focus on those parts of the program that are
more likely to cause problems. Analogously, control smells may indicate where in the
code it would be possible to add control solutions to improve a software ability of reach-
ing its goals. Automatic knob identification is an example of such applications [Harman
et al. 2014]. Furthermore, control smells can point to erroneous or misplaced imple-
mentation of controllers. For example, implementing two uncoordinated controllers
targeting the same goal but using different actuators may lead to oscillating behavior;
if the problem is detected, a remedy might be revising the control allocation or devising
a multiple-output controller.
Testing and debugging controlled systems. A self-adaptive software system’s pe-
culiar reactions to different environmental conditions challenge traditional quality
assurance approaches. In Section 2.7, we reviewed recent results on validation and
verification of controlled systems. However, controllers alter the behavior of the sys-
tem, possibly leading to emerging behaviors not considered when analyzing the system
alone. Verification and validation, as well as testing, of the controlled system has to
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take into account the interactions between the controller, the system, and its environ-
ment. How to reproduce a self-adaptive system’s execution, how to identify an error’s
source, and how to debug it are just examples of the challenges controllable software
presents to software engineering.
Making nonadaptive software adaptive. While design for controllability is ar-
guably a long-term goal, empowering existing software with adaptation capabilities is
a short-term goal, which would improve its robustness and scalability. Most current
software is not adaptive. Enabling adaptation requires identifying both actuators that
alter behavior and sensors that measure this behavior, as well as devising controllers
for each actuator. The identified sensors and actuators have to guarantee the observ-
ability and controllability of the system. Observability is the property that the system
state is inferable from the sensor measurements; controllability is the property that
the available actuators can drive the system toward its goals. While in control theory
these concepts are formalized and have a mathematical counterpart for many classes of
dynamic models, it is still unclear how to assess these properties for software artifacts.
Automatic synthesis and update of controllers. Most software is not designed
with controllability in mind. While in a long-term vision controllability may become a
first-class concept in software design, (semi-)automated controller synthesis can pro-
vide a suitable solution for a variety of problems. Though no general synthesis method
is currently known, several classes of software control problems are addressed with au-
tomated synthesis techniques (e.g., Filieri et al. [2014], D’ippolito et al. [2013], Filieri
et al. [2011b], and Hoffmann [2014]. Automatic learning for knowledge-based con-
trollers [Tesauro 2007] and auto-tuning mechanisms tailoring general solutions to
specific cases are other means allowing practitioners to apply control theoretical adap-
tation mechanisms without mastering the underlying mathematical knowledge. This
thread of research can empower practitioners with broadly applicable, ready-to-use
solutions for several adaptation problems.
Coordinating multiple controllers. Complex software systems may require multi-
ple controllers, possibly of different types. For example, functional adaptation can be
managed by event-based controllers, able to select different component assemblies to
guarantee safety or liveness. Quantitative goals can be handled by equation-based con-
trollers. Multiple controllers may interact, introducing undesirable emerging behav-
iors, possibly compromising system stability. Analogous problems occur in assembly
of off-the-shelf components that may embed self-adaptation capabilities. Even self-
adaptive execution infrastructures may interfere with the behavior of self-adaptive
software. Examples are cloud-based execution environments, but also modern CPUs,
such as the turbo-boost capabilities of some Intel processors able to automatically adapt
the degree of parallelism and frequency of the cores. The coordination of multiple con-
trollers is an open challenge for both software engineering and control theory. Several
results from the analysis of distributed and concurrent systems have been adapted
for event-based controllers; however, these results can hardly cope with heterogeneous
controllers.

5.2. The Control Engineering Perspective

Control theory has developed a broad set of mathematically grounded techniques for
the control of physical processes. While several of these techniques have been adapted
to different domains, software systems present unprecedented challenges to control
solutions. In particular, many software behaviors are arguably not bounded to the
law of the physical world, requiring control engineers to develop new modeling, sens-
ing, actuation, and control techniques. While this development is most likely a joint
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effort of software and control engineers to design controllable software on a first-hand
basis, control engineers are challenged with the need of changing their perspective on
several established problems.

Software models for control. Software systems typically lack the mathematical
models as described in Section 2.3. Many of the control methods described in Sec-
tion 3 require a model in terms of a differential or difference equations that software
engineers would not normally define. To model software systems mathematically, the
numerous methods from system identification can be used [Ljung 2012]. Broadly, these
methods construct models using measurements. For software, building these models
might be easier than for physical systems as running software is usually cheaper and
can be done faster. This means large amounts of data for identification purposes are
easily available. Nonetheless, system identification may be ineffective without the pre-
liminary definition of a class of models to be trained from data. Software behaviors
may be difficult to cast into established classes of differential or difference equations,
possibly requiring the definition of more complex classes of hybrid models.

Monitoring and instrumentation. While it can be prohibitively expensive to add a
sensor to an existing physical system, it is relatively easy to add some code to a piece
of software to enable another measurement of its internal state. This can be a “short-
cut” toward achieving certain control goals that for physical systems would require
extensive filter design or complex control strategies. On the other hand, it requires
the development of techniques for the possibly optimal instrumentation of the code
not only to satisfy control needs (e.g., observability) but also to take into account the
impact of the monitoring infrastructure on the production systems, in terms of both
effectiveness and overhead.

Software actuation. In general, physical plants that need control strategies are de-
signed to be controlled, according to the natural constraints imposed by physics. Pumps
and valves are placed following standard or established industrial design processes.
Such standard processes do not exist for controllable software and need to be defined.
Similarly to the design of monitoring infrastructures, the optimal design of actuators
has to take into account both control needs (e.g., controllability) and software produc-
tion needs, again in terms of effectiveness but also in terms of impact on the global
software design and cost of actuation.
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L. Grüne and J. Pannek. 2011. Nonlinear Model Predictive Control. Springer.
E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. 2010. PARAM: A model checker for parametric markov

models. In Proceedings of the 22nd International Conference on Computer Aided Verification (CAV’10)
(LNCS), Vol. 6174. Springer, 660–664.

M. Harman, Y. Jia, W. B. Langdon, J. Petke, I. H. Moghadam, S. Yoo, and F. Wu. 2014. Genetic improvement
for adaptive software engineering (keynote). In Proceedings of the 9th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS’14).

E. N. Hartley, J. L. Jerez, A. Suardi, J. M. Maciejowski, E. C. Kerrigan, and G. A. Constantinides. 2014.
Predictive control using an FPGA with application to aircraft control. IEEE Transactions on Control
Systems Technology 22, 3 (May 2014), 1006–1017.

W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada. 2012. An introduction to event-triggered and self-
triggered control. In 2012 IEEE 51st Annual Conference on Decision and Control (CDC’12). 3270–3285.

W. P. M. H. Heemels, J. H. Sandee, and P. P. J. Van Den Bosch. 2008. Analysis of event-driven controllers for
linear systems. International Journal of Control 81, 4 (2008), 571–590.

J. L. Hellerstein. 2009. Engineering autonomic systems. In Proceedings of the 6th International Conference
on Autonomic Computing (ICAC’09). ACM, New York, NY, 75–76.

J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. 2004. Feedback Control of Computing Systems. John
Wiley & Sons.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 4, Article 24, Publication date: February 2017.



24:28 A. Filieri et al.

J. L. Hellerstein, V. Morrison, and E. Eilebrecht. 2010. Applying control theory in the real world: Experience
with building a controller for the .NET thread pool. SIGMETRICS Performance Evaluation Review 37,
3 (Jan. 2010), 38–42.

T. Henzinger, P.-H. Ho, and H. Wong-Toi. 1997. HyTech: A model checker for hybrid systems. In Computer
Aided Verification. Lecture Notes in Computer Science, Vol. 1254. Springer, Berlin, 460–463.

T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. 1998. What’s decidable about hybrid automata? Journal
of Computer and System Sciences 57, 1 (1998), 94–124.

H. Hermes and J. P. Lasalle. 1969. Functional Analysis and Time Optimal Control. Elsevier Science.
H. Hoffmann. 2014. CoAdapt: Predictable behavior for accuracy-aware applications running on power-aware

systems. In 2014 26th Euromicro Conference on Real-Time Systems (ECRTS’14). IEEE, 223–232.
H. Hoffmann. 2015. Software engineering meets control theory. In Proceedings of the 25th International

Symposium on Operating Systems (SOSP’15). ACM, 14.
H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Rinard. 2011. Dynamic knobs for

responsive power-aware computing. In Proceedings of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems. 14.

P. Inverardi and M. Tivoli. 2003. Software architecture for correct components assembly. In Formal Methods
for Software Architectures. Springer, 92–121.

H. I. Ismail, I. V. Bessa, L. C. Cordeiro, E. B. de Lima Filho, and J. E. Chaves Filho. 2015. DSVerifier: A
Bounded Model Checking Tool for Digital Systems. Springer International Publishing, Cham, 126–131.

P. Jamshidi, A. Ahmad, and C. Pahl. 2014. Autonomic resource provisioning for cloud-based software. In Pro-
ceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS’14). ACM, New York, NY, 95–104.

P. Jamshidi, A. Sharifloo, C. Pahl, H. Arabnejad, A. Metzger, and G. Estrada. 2016. Fuzzy self-learning
controllers for elasticity management in dynamic cloud architectures. In Proceedings of the 12th Inter-
national ACM SIGSOFT Conference on Quality of Software Architectures (QoSA). 70–79.

J. Jantzen. 2013. Foundations of Fuzzy Control: A Practical Approach. John Wiley & Sons.
S. Kang and D. Garlan. 2014. Architecture-based planning of software evolution. International Journal of

Software Engineering and Knowledge Engineering 24, 2 (2014), 211–242.
J. Kephart and D. Chess. 2003. The vision of autonomic computing. Computer 36, 1 (Jan. 2003), 41–50.
E. C. Kerrigan. 2014. Co-design of hardware and algorithms for real-time optimization. In 2014 European

Control Conference (ECC’14),. 2484–2489.
H. Khalil. 2015. Nonlinear Control. Pearson Education.
C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez. 2014. Brownout: Building more robust cloud

applications. In Proceedings of the 36th International Conference on Software Engineering (ICSE’14).
ACM, New York, NY, 700–711.

M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and P. Sadayappan. 2013. When polyhedral
transformations meet SIMD code generation. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’13). ACM, New York, NY, 127–138.

S. Kowshik, D. Dhurjati, and V. Adve. 2002. Ensuring code safety without runtime checks for real-time
control systems. In Proceedings of the 2002 International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES’02). ACM, New York, NY, 288–297.

J. Kramer and J. Magee. 2007. Self-managed systems: An architectural challenge. In International Conference
on Software Engineering (ISCE’07), Workshop on the Future of Software Engineering (FOSE’07). 259–
268.

F. Krikava, P. Collet, R. France, and others. 2014. ACTRESS: Domain-specific modeling of self-adaptive
software architectures. In Symposium on Applied Computing, Track on Dependable and Dependable
and Adaptive Distributed Systems.

P. R. Kumar and P. Varaiya. 1986. Stochastic Systems: Estimation, Identification and Adaptive Control.
Prentice-Hall, Upper Saddle River, NJ.

M. Kwiatkowska and D. Parker. 2013. Automated verification and strategy synthesis for probabilistic sys-
tems. In Proceedings of the 11th International Symposium on Automated Technology for Verification and
Analysis (ATVA’13) (LNCS), Vol. 8172. Springer, 5–22.

G. Labinaz, M. M. Bayoumi, and K. Rudie. 1997. A survey of modeling and control of hybrid systems. Annual
Reviews in Control 21 (1997), 79–92.

P. Lama and X. Zhou. 2013. Autonomic provisioning with self-adaptive neural fuzzy control for percentile-
based delay guarantee. Transactions on Autonomous and Adaptive Systems (TAAS) 8, 2 (2013), 9.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 4, Article 24, Publication date: February 2017.



Control Strategies for Self-Adaptive Software Systems 24:29

S. Lambert. 2001. Knowledge-based control systems. In Theory and Practice of Informatics (SOFSEM’01),
Leszek Pacholski and Peter Ružička (Eds.). LNCS, Vol. 2234.
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J. Liu, J. Eker, and J. Janneck. 2004. Actor-oriented control system design: A responsible framework per-

spective. IEEE Transactions on Control Systems Technology 12, 2 (2004), 250–262.
L. Ljung. 2012. System Identification: Theory for the User (2nd ed.). Prentice Hall PTR, Upper Saddle River,

NJ.
J. Lunze and F. Lamnabhi-Lagarrigue. 2009. Handbook of Hybrid Systems Control: Theory, Tools, Applica-

tions. Cambridge University Press.
J. Lunze and D. Lehmann. 2010. A state-feedback approach to event-based control. Automatica 46, 1 (2010),

211–215.
J. Maciejowski. 2002. Predictive Control: With Constraints. Pearson Education.
M. Maggio, H. Hoffmann, A. Papadopoulos, J. Panerati, M. Santambrogio, A. Agarwal, and A. Leva. 2012.

Comparison of decision making strategies for self-optimization in autonomic computing systems. ACM
Transactions on Autonomous and Adaptive Systems 7, 4, Article 36 (Dec. 2012), 32 pages.

R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann. 2016. Automated test suite generation for time-
continuous simulink models. In Proceedings of the 38th International Conference on Software Engineer-
ing (ICSE’16). ACM, New York, NY, 595–606.

J. Mendel and D. Wu. 2010. Perceptual Computing: Aiding People in Making Subjective Judgments. Wiley-
IEEE Press.

M. Morari and E. Zafiriou. 1989. Robust Process Control. Prentice Hall, Englewood Cliffs, NJ.
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