
signatr: A Data-Driven Fuzzing Tool for R

Alexi Turcotte
turcotte.al@northeastern.edu

Northeastern University
Boston, MA, USA

Pierre Donat-Bouillud
donatpie@fit.cvut.cz

Czech Technical University Prague
Prague, Czech Republic

Filip Křikava
filip.krikava@fit.cvut.cz

Czech Technical University Prague
Prague, Czech Republic

Jan Vitek
j.vitek@northeastern.edu

Northeastern University
Boston, MA, USA

Abstract

The fast-and-loose, permissive semantics of dynamic pro-
gramming languages limit the power of static analyses. For
that reason, soundness is often traded for precision through
dynamic program analysis. Dynamic analysis is only as good
as the available runnable code, and relying solely on test
suites is fraught as they do not cover the full gamut of pos-
sible behaviors. Fuzzing is an approach for automatically
exercising code, and could be used to obtain more runnable
code. However, the shape of user-defined data in dynamic
languages is difficult to intuit, limiting a fuzzer’s reach.

We propose a feedback-driven blackbox fuzzing approach
which draws inputs from a database of values recorded from
existing code. We implement this approach in a tool called
signatr for the R language. We present the insights of its
design and implementation, and assess signatr’s ability to
uncover new behaviors by fuzzing 4,829 R functions from
100 R packages, revealing 1,195,184 new signatures.

CCS Concepts: · Software and its engineering→ Soft-

ware notations and tools.

Keywords: R, fuzzing, dynamic program analysis, dynamic
programming languages

ACM Reference Format:

Alexi Turcotte, Pierre Donat-Bouillud, Filip Křikava, and Jan Vitek.

2022. signatr: A Data-Driven Fuzzing Tool for R. In Proceedings

of the 15th ACM SIGPLAN International Conference on Software

Language Engineering (SLE ’22), December 06ś07, 2022, Auckland,

New Zealand. ACM, New York, NY, USA, 6 pages. https://doi.org/

10.1145/3567512.3567530

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SLE ’22, December 06ś07, 2022, Auckland, New Zealand

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9919-7/22/12.

https://doi.org/10.1145/3567512.3567530

1 Introduction

Dynamic analysis is often the only practical way to analyse
code written in dynamic languages as the semantics of these
languages severely limits static analyses. Dynamic analysis,
however, requires both code to run and valid inputs for said
code. To draw conclusions about a code base, one could run
the existing, runnable code, e.g., tests, but such code paints
an incomplete picture as it is challenging to fully cover the
range of behaviors allowed by dynamic languages.

To increase coverage, one couldmake use of a fuzzer, a tool
that exercises code by generating random inputs. Fuzz testing
has seen widespread adoption, primarily to find bugs, per-
formance pathologies, and security vulnerabilities. However,
dynamically typed languages such as Python, JavaScript, and
R pose unique challenges that revolve around the idea that
dynamic code tends to hide runtime errors. For instance, ac-
cessing a non-existent field of an object in JavaScript yields
the value undefined instead of crashing, and basic functions
in R will readily coerce values whose types do not match.
A tool that tries to run code automatically will thus have
very little to go on vis-à-vis the correctness of the code being
generated as there is no clear observable witness of an error.
On top of this, the lack of static types leaves fuzzers with
very little information about what values are expected to
begin with. Finally, it is difficult to generate complex values
automatically in dynamically typed languages; in a stati-
cally typed language like Java, the shapes of user-defined
objects can be inferred from a static class definition. In con-
trast, there is no such guide in dynamic languages, limiting
a fuzzer’s ability to generate realistic inputs.

To get around this, we propose an approach to fuzzing that
relies on an extensive database of observed values. We de-
velop a tracer that collects information about function calls
and values created during code execution, and store this in-
formation in a database with an expressive query API. Then,
we leverage this database to generate new function calls us-
ing the recorded values. This approach is implemented in a
tool called signatr for the R programming language.

To validate our tool, we revisit an application of dynamic
analysis, namely trace typing [2] where the goal is to guess
the signatures of library functions by observing the values

216

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3567512.3567530
https://doi.org/10.1145/3567512.3567530
https://doi.org/10.1145/3567512.3567530

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Alexi Turcotte, Pierre Donat-Bouillud, Filip Křikava, and Jan Vitek

that they accept and return. We perfom that experiment on
R libraries and use the contractr type inference tool [9],
wherein function types were inferred from recorded calls in
R package test, example, and vignette code. Fuzzing 4,829 of
those R functions with our tool generated 1.2M new unique
signatures compared to the original study.

2 Background and Related Work

Related Work. One of the earliest fuzzers is Randoop,
a feedback-driven random test generation tool for Java [7],
where sequences of method calls are generated to test classes,
and arguments are randomly generated for these calls. For
primitive values, a random value is selected from a prede-
fined, but user-extensible list; for reference types, a value is
selected at random from those which have been seen, and
if none are available then null is selected. While this tech-
nique is effective at generating tests involving non-trivial
objects that are built up from a number of method calls,
data science languages like R often require generating re-
alistic data. QuickCheck is another interesting tool in this
space [4]. While it can generate random inputs, the strategy
for constructing inputs needs to be specified. The lack of type
information in R limits the usefulness of such approaches.
American Fuzzy Lop (AFL) is a state-of-the-art industrial
fuzzer [1]. AFL takes a program and one example file as in-
put, calls the program with the input, and then uses a variety
of heuristics to transform the input and fuzz the program.
AFL aims to find defects, while our approach aims to find
novel inputs that successfully execute.

TheRLanguage. Wepresent a fuzzing tool called signatr
for R, a language which sports an unusual mix of language
features making it a challenging target for tooling [6]:
− The lack of a static type system, so there is little to suggest
what expected arguments or return values are.
− Primitive values (booleans, integers, ...) have a separate
łNAž value indicating that data is łnot availablež.
− Values are automatically and silently coerced across types.

Each function may coerce parameters as it sees fit.
− Most values are vectors and can be annotated by key-value

pairs called attributes (e.g. the dim attribute turns a vec-
tor into a matrix). Attributes coupled with reflection are
the building blocks for advanced features such as object-
orientation. In R, there is no description of a shape of an
object, it is simply a value with the class attribute.

− Shared values are copied on write. A value is shared if it is
accessible frommultiple variables. Thus visible side effects
are less frequent than in traditional imperative languages.

− Function arguments are evaluated lazily resulting in un-
predictable ordering of side-effects.
There has been work on a static type system for R [9]. A

simple type annotation language has been evaluated on a
corpus of 400 R packages. In Section 4, we will revisit that

Extract
runnable

code

signatr
record

signatr
sxpdb-merge

merged
SXPDB

.R

.R

.R

List of
R

packages

signatr
record

signatr
record

...

R scripts Individual
SXPDB

Figure 1. Recording pipeline.

work and demonstrate improvements by discovering new
signatures for the previously studied functions.

3 Approach

There are two main phases to our approach: (1) recording R
code as it runs (Fig. 1); this involves capturing function argu-
ments and return values in our value database, and (2) fuzzing
by drawing inputs to functions from the database (Fig. 2).

For the recording phase, runnable code is extracted from
examples and tests in packages. This runnable code con-
sists of a set of scripts that can be run independently. Next,
the scripts are executed in parallel, and all arguments are
recorded into separate instances of our database, called the
sxpdb. Finally, all the database instances are merged into
one, in the process duplicate values are discarded. GNU par-
allel is used for orchestration [8]. Every R package hosted
on R’s main package repository (called CRAN) is required
to have runnable example scripts to show how the package
should be used, so there is a lot of code available.

As for the fuzzing phase, a list of functions to fuzz as well
as a sxpdb are taken as input. The functions are fuzzed in par-
allel. The output of the fuzzer is a list of successful function
calls, where a successful call is defined as one that generated
no warnings, errors, and did not cause R to crash. The fuzzer
relies on hooks before and after function execution: the hook
before invocation allows the fuzzer to process inputs, and the
hook after allows errors to be signaled and handled and the
return value to be processed. Concretely, the fuzzer runs the
functions using an extended R virtual machine that supports
attaching callbacks to various runtime events [5]. Users can
also plug a dynamic analysis directly into the pipeline.

Since R can crash (and does), to avoid losing results each
instance of the fuzzer consists of two processes: a worker that
fuzzes, and a supervisor that can spawn workers if needed.
Furthermore, the fuzzer runs isolated in a container as calling
arbitrary code could have dire consequences.
The tool itself consists of three standalone components:

argtracer, the tracer responsible for running code and record-
ing function invocation, sxpdb, the value database, and finally
generatr, the fuzzer responsible for generating inputs. They
are R packages written in a combination of R and C++.

217

signatr: A Data-Driven Fuzzing Tool for R SLE ’22, December 06ś07, 2022, Auckland, New Zealand

capture
calls

capture
calls

capture
calls

List of
R

functions

...

signatr
fuzz

signatr
fuzz

signatr
fuzz

...

infer call
signatures

infer call
signatures

infer call
signatures

.csv

.csv

.csv

Traces
Type

signatures

merged
SXPDB

Use-case specific

.calls

.calls

.calls

...

Figure 2. Fuzzing pipeline.

3.1 Tracer

The tracer is built on top of the aforementioned extended
virtual machine. The two runtime events we use are func-
tion exit, where all arguments are captured and stored, and
a context jump, which is necessary to keep the call stack
balanced as the interpreter uses long jumps for loop control
flow, return statements, and error handling. (On a long jump,
the exit hook is ignored, so we maintain our own version of
the call stack to capture all function exits.) When the tracer
sees a call, it only sees a pointer to a closure, and the func-
tion’s name and its package can only be found by searching
through the loaded namespaces and the symbols they con-
tain. Thus, the tracer eagerly builds an index of package and
function names when namespace functions are loaded.

Regarding performance, there is 1.2Ð 7.8 (3.3 on average)
slowdown when running with tracing enabled (based on the
running / tracing 3,236 R scripts recording 8M unique values
of 3GB size). This cost is mostly due to the value serialization.
The tracer is written in 600 lines of C++ code.

3.2 Database of Values

The database is hand-written to leverage domain-knowledge
of R values and optimize it for the queries supported by our
API. It is implemented in 5K lines of C++ and 1.5K lines of R.

Storage. The database stores unique values. We use XXH-
128 hashes for uniqueness in combination with a hash table
based on RobinHood hashing1. While the hashing is fast,
we need to lower R values into a binary format. R provides
a binary serialization XDR,2 but it is costly. We also strip
the serialization of sources of non-determinism related to
character encodings. Since many values are pushed to the
database in an average recording session, we try to avoid
serialization as much as possible. For this, we use the trace

bit that is part of each value.3 If not set, the value is fresh

1cyan4973.github.io/xxHash, github.com/martinus/robin-hood-hashing
2cran.r-project.org/doc/manuals/r-release/R-ints.html#Serialization-

Formats
3A bit in the C struct that represents a value, cran.r-project.org/doc/

manuals/r-release/R-ints.html#Rest-of-header.

and we serialize it, compute its hash, store it. The trace bit is
then set to avoid repeated serialization. In spite of R’s copy-
on-write semantics, values can be modified in place before
being shared, and these values may be serialized repeatedly
to capture the updates performed by the program.

The database also stores metadata about values and their
origin. We also keep a unique id for each sequence of ar-
guments coming from the same call site. This allows us to
replay the calls as they were observed.
The database maintains tables for the hashes, runtime

metadata (e.g., how often a value was seen), static metadata,
origins, call ids, and class names. Variable length data are
stored in a combination of 2 tables, one giving an offset into
the other table which holds the size of the value and the value
itself. Origin strings and class names are interned, i.e., each
unique string is stored separately, and referred to by pointer.
Search indices are built using fast compressed bitsets [3].
The database supports all values except external pointers
(e.g. pointer to C allocated data). Environments and closures
were not stored in the database during our experiments since
they dramatically increased memory pressure.
Finally, opening the database in read mode only loads

metadata. Retrieving values from disk is done on demand,
making it possible to query larger-than-memory databases.

Queries. Values can be queried based on their typeof-
type or class, on the presence of NAs, number of attributes,
and dimensions. The database can be queried for a random
value with the desired metadata, or can be queried by provid-
ing an existing value along with a list of search parameters
to be relaxed.

3.3 Fuzzing

The value database is at the core of our fuzzing approach,
which is similar in spirit to mutation-based fuzzing, where
valid inputs are taken and mutated to try to exercise new
functionality (rather than have inputs be randomly gener-
ated). Instead of mutating arguments to previous calls, new
argument values are selected based on previous ones.

The fuzzer generates calls to a function and chooses argu-
ments to these calls as depicted in Algorithm 1. In addition
to the target function and database, the algorithm considers
how many query parameters to relax on (numRelax), as well
as all of the previously seen successful calls to the function
(succs). For each parameter, the algorithm determines how
to relax (this may change from one iteration to the next),
finds all values that inhabited that parameter in successful
calls, chooses one value, and queries the database for a value
similar to it save for the relaxation. If no successful calls
to the function have been observed, random values can be
chosen.
The fuzzing approach itself is depicted in Algorithm 2.

First, the collection of already known calls to the function is
obtained from the database. The main idea of the approach is

218

cyan4973.github.io/xxHash
github.com/martinus/robin-hood-hashing
cran.r-project.org/doc/manuals/r-release/R-ints.html#Serialization-Formats
cran.r-project.org/doc/manuals/r-release/R-ints.html#Serialization-Formats
cran.r-project.org/doc/manuals/r-release/R-ints.html#Rest-of-header
cran.r-project.org/doc/manuals/r-release/R-ints.html#Rest-of-header

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Alexi Turcotte, Pierre Donat-Bouillud, Filip Křikava, and Jan Vitek

to start by selecting new arguments essentially at random by
querying the database and relaxing on many parameters, and
gradually reduce the number of parameters being relaxed as
the fuzzer progresses. Concretely, the number of parameters
being relaxed is reduced every tick, which is determined by
dividing the total fuzzing budget by the number of param-
eters that can be relaxed (numRelaxParams). The function
will be fuzzed for as long as the budget allows, and initially
all database parameters will be relaxed. Arguments for a
new call are generated through the approach depicted in
Algorithm 1 (getArgs), the call is performed, and the results
are saved in res. If there were no errors, warnings, or crashes,
then the successful call is added to the list of successful calls
succs and iteration continues until the budget is exhausted.

Algorithm 1 Selecting Arguments for A Call

1: procedure getArgs(𝑓 , 𝑛𝑢𝑚𝑅𝑒𝑙𝑎𝑥, 𝑑𝑏, 𝑠𝑢𝑐𝑐𝑠)

2: 𝑝𝑎𝑟𝑎𝑚𝑠 ← 𝑔𝑒𝑡𝑃𝑎𝑟𝑎𝑚𝑠 (𝑓)

3: for 𝑝 in 𝑝𝑎𝑟𝑎𝑚𝑠 do

4: ⊲ relax on 𝑛𝑢𝑚𝑅𝑒𝑙𝑎𝑥 params

5: 𝑟𝑒𝑙𝑎𝑥 ← 𝑝𝑖𝑐𝑘𝑆𝑜𝑚𝑒 (𝑟𝑒𝑙𝑎𝑥𝑃𝑎𝑟𝑎𝑚𝑠, 𝑛𝑢𝑚𝑅𝑒𝑙𝑎𝑥)

6: ⊲ get all values that 𝑝 had in successful calls to 𝑓

7: 𝑠𝑒𝑒𝑑 ← 𝑔𝑒𝑡𝐴𝑟𝑔𝑠𝐹𝑜𝑟 (𝑝, 𝑠𝑢𝑐𝑐𝑠)

8: ⊲ choose one at random

9: 𝑣 ← 𝑝𝑖𝑐𝑘𝑂𝑛𝑒 (𝑠𝑒𝑒𝑑)

10: ⊲ sample a similar value from the database

11: 𝑎𝑟𝑔𝑠 [𝑝] ← 𝑠𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟 (𝑣, 𝑑𝑏, 𝑟𝑒𝑙𝑎𝑥)

12: end for

13: return 𝑎𝑟𝑔𝑠 ⊲ the args for the new call

14: end procedure

Algorithm 2 Fuzzing

1: procedure fuzzWithDB(𝑓 , 𝑑𝑏, 𝑏𝑢𝑑𝑔𝑒𝑡)

2: 𝑠𝑢𝑐𝑐𝑠 ← 𝑔𝑒𝑡𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙𝐶𝑎𝑙𝑙𝑠 (𝑓 , 𝑑𝑏)

3: 𝑡𝑖𝑐𝑘 ← 𝑏𝑢𝑑𝑔𝑒𝑡/𝑛𝑢𝑚𝑅𝑒𝑙𝑎𝑥𝑃𝑎𝑟𝑎𝑚𝑠

4: 𝑟𝑒𝑙𝑎𝑥𝑇ℎ𝑖𝑠𝑇𝑖𝑚𝑒 ← 𝑛𝑢𝑚𝑅𝑒𝑙𝑎𝑥𝑃𝑎𝑟𝑎𝑚𝑠

5: 𝑖 ← 1

6: while 𝑖 ≠ 𝑏𝑢𝑑𝑔𝑒𝑡 do

7: ⊲ gradually relax on fewer params

8: if 𝑖 mod 𝑡𝑖𝑐𝑘 = 0 then

9: 𝑟𝑒𝑙𝑎𝑥𝑇ℎ𝑖𝑠𝑇𝑖𝑚𝑒 ← 𝑟𝑒𝑙𝑎𝑥𝑇ℎ𝑖𝑠𝑇𝑖𝑚𝑒 − 1

10: end if

11: 𝑎𝑟𝑔𝑠 ← 𝑔𝑒𝑡𝐴𝑟𝑔𝑠 (𝑓 , 𝑟𝑒𝑙𝑎𝑥𝑇ℎ𝑖𝑠𝑇𝑖𝑚𝑒,𝑑𝑏, 𝑠𝑢𝑐𝑐𝑠)

12: 𝑟𝑒𝑠 ← 𝑐𝑎𝑙𝑙 (𝑓 , 𝑎𝑟𝑔𝑠)

13: ⊲ add successful call to 𝑠𝑢𝑐𝑐𝑠

14: if no warnings, errors, crashes in 𝑟𝑒𝑠 then

15: 𝑠𝑢𝑐𝑐𝑠 ← 𝑠𝑢𝑐𝑐𝑠 + 𝑟𝑒𝑠

16: end if

17: 𝑖 ← 𝑖 + 1

18: end while

19: return 𝑠𝑢𝑐𝑐𝑠 ⊲ the successful calls to 𝑓

20: end procedure

3.4 Intended Use

The tracing discussed in Section 3.1 is costly in that running
large swaths of R code takes time. Thankfully, this only needs
to be done once to construct a database, which can then be
reused by the fuzzer. For simplicity, our artifact4 contains
instructions to download a 10GB sample database.

4 Assessment

We used signatr to stress-test one of the proposed type
system for R [9]. The type system was designed empirically,
with the help of a dynamic analysis that inferred function sig-
natures from the types of values observed while running ex-
tracted code from packages. In a nutshell, a type was inferred
from each call to a function, and these types were unified
into a single function type, and the more unique successful
calls there are, the more precise the inferred signatureÐthe
types inferred from successful calls are referred to as call
signatures. It would be therefore interesting to see how many

additional successful calls can signatr generate?

We ran all of our experiments on two Ubuntu 18.04 servers,
each with a 72 core Intel Xeon 6140 2.30GHz processor and
256GB of RAM.

Recording. First, we created a sxpdb for the fuzzer. For
this we used the extracted runnable code from the same cor-
pus as the original study which consists of 17,463 R scripts
containing 389.7K lines of code (excluding comments and
new lines). The database was generated in 16 hours and oc-
cupies 287.17 GB of disk space. It contains 39.4M unique
values recorded from 20.5M calls to 38.1K functions in 652
packages. Figure 3 shows the distribution of main value
types. The vast majority of values are vectors and matrices
of real numbers which is unsurprising as R is mostly used
for numerical computing. That said, many of them (47.2%)
contain attributes which is what makes them interesting, as
attributes add semantic meaning. The next big group are
lists, which can be divided into two groups, data frames
(two dimensional, column-major structure representing ob-
servations) and records. Note that 0.5% are logical vectors of
varying length, not simply true or false.

Fuzzing. Armed with this database, signatr fuzzed 4,829
functions from 100 packages, a subset of the original corpus,
in 19 hours. The fuzzing budget was set to 5,000, with 64
functions being fuzzed in parallel. In total, 24.1M calls were
made, and out of that, 13.9% were successful, resulting in
3,351,753 traces of 2,315 functions coming from 98 packages.
The vast majority of errors were exceptions, but in 211 cases,
the R process crashed. While the aim of this work is not bug
finding, we have investigated one such crash in stringi5,
and found that it was caused by memory corruption by large
input. The issue was reported, acknowledged and fixed.

4https://github.com/PRL-PRG/sle22-signatr-artifact
5A sting processing library, one of the most downloaded package in R.

219

https://github.com/PRL-PRG/sle22-signatr-artifact

signatr: A Data-Driven Fuzzing Tool for R SLE ’22, December 06ś07, 2022, Auckland, New Zealand

2.3%

71.2%

0.5%

17.2%

4.2%
4.6%

Integer

List

Logical

Others

Real

String

Figure 3. The sxpdb value type distribution

Results. The results of fuzzing is shown in Figure 4. From
the 4,829 functions in our 100 packages corpus, the fuzzer
managed to generate call signatures for 2,189 functions (45.3%).
In comparison, tracing, i.e., recording calls by running the ex-
tracted code covers 3,135 functions (64.9%). While the fuzzer
covered fewer functions, it generated over 1.2M new unique
call signatures (on average 562.7 per function), i.e., 105.1
times more call signatures in comparison to tracing. Out
of the 2,189 functions, 607 functions were covered only by
fuzzing. Fuzzed signatures overlapped with traced ones in
only 1,082 cases in 597 functions.
The reason that signatr failed to generate a single suc-

cessful call for 2,640 functions is because they require a very
specific shape of one or more of its arguments, or the ar-
guments depended on one-another. As an example of the
latter case, certain functions from the dplyr data manipula-
tion package required a data frame alongside an unevaluated
expression made up of column names from the data frame.
Besides that, problematic functions include those that use
non-standard scoping, manipulating arguments as uneval-
uated expressions and evaluating them in custom environ-
ments. In some cases the error message could have been used
as a feedback to the fuzzer (and we plan to address it in the
next iteration), but this is not easy to generalize.
Next, we looked at code coverage to see if the new call

signatures translated to more code being exercised. Using
the covr package6, we computed line coverage of R source
code for 1,342 functions using the fuzzed calls, and separately
using the traced calls. This is not all of the functions that
signatr managed to fuzz, as running covr on some func-
tions caused runtime errors, and also repeating certain calls
failed (both fuzzed and traced). For 294 functions, signatr
improved code coverage on average by 20.4% (as compared
with coverage obtained by simply running package tests,
examples, and vignettes). 1.2M new calls yielded only 20.4%
more coverageÐwhile new code paths were explored, the
extensive polymorphism and use of coercion in R mean that
most of these new calls did not exercise new R code.

6The only tool for R code coverage, cf. https://covr.r-lib.org

fuzzingtracing

100 10 1 0 1 10 100 1,000

of unique call signatures found by tracing and fuzzing (log scale)

F
u

n
c
ti
o

n
s
 (

e
a

c
h

 l
in

e
 r

e
p

re
s
e

n
ts

 o
n

e
 f

u
n

c
ti
o

n
)

Figure 4. Number of unique call signatures.

Summary. signatr uncovers many calls with new type
signatures, significantly expanding onwhat tracing alone can
discover, particularly for polymorphic functions. Together,
existing and generated calls yields a wealth of interesting
runnable code that will be essential for the further design of
a possible type system for the R programming language.

5 Conclusions and Future Work

Fuzzing is a useful technique not only for finding bugs and
security vulnerabilities, but also for getting insights about
code. However, it is hindered by the permissive semantics
of dynamic languages as well as the dynamic nature of how
complex data is defined. In this work, we proposed a fuzzing
approach that relies on a database of observed values to
provide complex and realistic inputs for functions. We im-
plement this approach in a tool called signatr for the R
programming language. We show that signatr uncovers
many new call signatures for R functions and it can be a
useful tool in a data-driven language evolution toolbox.
There are various avenues to improve the tool itself. For

instance, the fuzzing component of our approach could be en-
hanced to consider the types of default function parameters.
Further, we could expand the database with knowledge of
how values co-occur, which would add more dimensions to
how values can be selected. While this approach was imple-
mented in a tool for R, it is broadly applicable in all languages,
and the only real language-specific aspect is the set of pa-
rameters in the database. For instance, one could implement
a similar tool for object-oriented languages, where database
metadata could include object field names (e.g., JavaScript).

220

https://covr.r-lib.org

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Alexi Turcotte, Pierre Donat-Bouillud, Filip Křikava, and Jan Vitek

A signatr demonstration

The following is a short demonstration of the basic signatr
functionality, i.e., how to create the value database by run-
ning R code and then how to use it for fuzzing. The tool is
packaged as an R library. It can be used both in a script or
interactively from an R REPL.
We begin by starting R (concretely, R-dyntrace version

4.0.2 which has the hooks used by the argtracer) and load-
ing signatr. In the following listings, the $ indicates shell
prompt and > denotes the R REPL.

$ R

R version 4.0.2 (2020-06-22) -- "Taking Off Again"

...

> library(signatr)

To generate a database of values, we need some code to
run. One way to get it is to extract it from an existing R
package, for example stringr:

> extract_package_code("stringr", output_dir = "demo")

...

7 examples/str_detect.Rd.R examples

...

This will extract all the runnable snippets from the pack-
age documentation and tests into the given directory. For
example:

$ cat demo/examples/str_detect.Rd.R

...

fruit <- c("apple", "banana", "pear", "pinapple")

str_detect(fruit, "a")

str_detect(fruit, "^a")

...

Next, we trace the file by executing it and recording all
the calls using the trace_file function:

> trace_file("demo/examples/str_detect.Rd.R", db_path = "demo.sxpdb")

status time db_size error

0 0.024 20 NA

The resulting database is stored as demo.sxpdb. In this exam-
ple, after running the str_detect.Rd.R file, the database contains
20 unique values. This can be repeated for all the other files.
To trace multiple files in parallel, one database is created per
file, which are merged using the merge_dbs function once they
are all available. This also allows us to run larger experiments
on multiple machines.

Once the database is ready, we can start fuzzing. The fuzzer
has a number of configuration points, but the easiest starting
point is the quick_fuzz helper function:

> R <- quick_fuzz("stringr", "str_detect", "demo.sxpdb",

budget = 100, action = "infer")

started a new runner:PROCESS 'R', running, pid 4157

fuzzing stringr:::str_detect [======] 100/100 (100%) 39s

stopped runner:PROCESS 'R', running, pid 4157

The infer action will use the infer_call_signature function
that infers types for each call argument and return value
using the type annotation language of Turcotte et al. [9]
(with the contractr type inference tool). infer_call_signature

returns a data frame with details for each call. Here, the data
frame includes the inferred signature in the result column.

> print(R)

A tibble: 100 x 6

args_idx error status result time

<list> <chr> <int> <chr> <drtn>

1 <int [3]> "Error in UseMeth... 1 NA 0.0363

2 <int [3]> NA 0 (character[],... 0.0351

...

The above listing shows two calls: a failed one (non-zero
status) with an error message, and a successful one with
an inferred signature. The args_idx column contains the
indices in the sxpdb of the values; thus, the actual argument
values can be obtained by looking up the args_idx in the
sxpdb.

One advantage of using R is that we can use R’s many data
analysis functions. For example, we can look at the resulting
signatures:

> count(R, result)

A tibble: 4 x 2

result n

<chr> <int>

1 (character[], ^character[], double) => ^logical[] 1

2 (character[], character, integer) => logical[] 1

3 (list<integer>, character[], list<integer>) => logical[] 1

4 NA 97

This shows that in three cases, the fuzzer managed to gen-
erate a call that was successful, and the signatures of those
calls. If you are repeating these steps, it is possible that your
results will be different since fuzzing is non-deterministic.

References
[1] AFL. 2022. American fuzzy lop. See https://lcamtuf.coredump.cx/afl/..

[2] Esben Andreasen, Colin S Gordon, Satish Chandra, Manu Sridharan,

Frank Tip, and Koushik Sen. 2016. Trace typing: An approach for

evaluating retrofitted type systems. In 30th European Conference on

Object-Oriented Programming (ECOOP 2016). Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik.

[3] Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. 2016.

Better bitmap performance with roaring bitmaps. Software: practice and

experience 46, 5 (2016), 709ś719.

[4] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool

for Random Testing of Haskell Programs. In Proceedings of the Fifth

ACM SIGPLAN International Conference on Functional Programming

(ICFP ’00). Association for Computing Machinery, New York, NY, USA,

268ś279. https://doi.org/10.1145/351240.351266

[5] Aviral Goel and Jan Vitek. 2019. On the Design, Implementation, and

Use of Laziness in R. Proc. ACM Program. Lang. 3, OOPSLA, Article 153

(oct 2019), 27 pages. https://doi.org/10.1145/3360579

[6] Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek. 2012. Eval-

uating the Design of the R Language. In ECOOP 2012 ś Object-Oriented

Programming, James Noble (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 104ś131.

[7] Carlos Pacheco and Michael D Ernst. 2007. Randoop: feedback-directed

random testing for Java. In Companion to the 22nd ACM SIGPLAN con-

ference on Object-oriented programming systems and applications com-

panion. 815ś816.

[8] Ole Tange et al. 2011. Gnu parallel-the command-line power tool. The

USENIX Magazine 36, 1 (2011).

[9] Alexi Turcotte, Aviral Goel, Filip Křikava, and Jan Vitek. 2020. Design-

ing types for R, empirically. Proceedings of the ACM on Programming

Languages 4, OOPSLA (2020), 1ś25.

221

https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/3360579

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Approach
	3.1 Tracer
	3.2 Database of Values
	3.3 Fuzzing
	3.4 Intended Use

	4 Assessment
	5 Conclusions and Future Work
	A signatr demonstration
	References

