
Feedback Control Definition Language

Filip Křikava and Philippe Collet
I3S CNRS - UMR 7271

August 2013

Contents

Contents i

List of Figures iv

Listings vii

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Objectives . 3
1.3 Contributions . 4
1.4 Outline . 4

2 Self-Adaptive Software Systems 7
2.1 Principles . 7

2.1.1 Feedback Control Loop . 8
2.1.2 Applications to Software Systems 10
2.1.3 Autonomic Computing . 12

2.2 Related Work . 16
2.2.1 Approaches Facilitating Self-Adaptation 17
2.2.2 Approaches Aiming at Generic Self-Adaptation 20

2.3 Summary . 28

3 Modeling Feedback Control Architectures - Syntax 31
3.1 Design Decisions . 31

3.1.1 Challenges Revisited . 32
3.1.2 Why a Model-Driven Engineering Approach? 33
3.1.3 Why an Actor-Oriented Design? . 35

3.2 Running Example . 38
3.3 Feedback Control Definition Language . 40

3.3.1 High-Level Overview . 40
3.3.2 Data Types . 44
3.3.3 Adaptive Element . 47
3.3.4 Composition . 49
3.3.5 Reflection . 52
3.3.6 Distribution . 54
3.3.7 Instances . 57
3.3.8 Annotations . 59

3.4 Summary . 59

i

4 Modeling Feedback Control Architectures - Semantics 61
4.1 Model of Computation . 61

4.1.1 Adaptive Element Director and Delegate 62
4.1.2 Message Passing . 65
4.1.3 Push Communication . 66
4.1.4 Pull Communication . 68
4.1.5 Element Activation . 68
4.1.6 Agnostic Port Mode . 69

4.2 Interaction Contracts . 70
4.2.1 Motivation . 70
4.2.2 Prerequisites . 73
4.2.3 Definition and Properties of an Interaction Contract 75
4.2.4 Interaction Contracts for Composites 80
4.2.5 Consistency . 84
4.2.6 Determinacy . 85
4.2.7 Completeness . 86
4.2.8 Activation Methods and Adaptive Element Acts 86

4.3 Summary . 92

5 The A Modeling Environment 93
5.1 Modeling Support . 93

5.1.1 Why a Domain-specific Language? 95
5.1.2 FCDL in a Nutshell: Modeling FCL Architectures 96
5.1.3 FCDL in a Nutshell: Adaptive Element Implementation 101
5.1.4 FCDL to JVM Model Transformation 105
5.1.5 FCDL to FCDL Transformation . 106

5.2 Code Generation Support . 107
5.2.1 Code Generator . 108
5.2.2 The A Framework . 110

5.3 Verification Support . 112
5.3.1 Model Consistency Checking . 112
5.3.2 External Verification . 113

5.4 Integrated Development with A . 116
5.5 Summary . 117

6 Evaluation 119
6.1 Experimental Case Studies . 119

6.1.1 Why HTC Case Studies? . 119
6.1.2 Case Study 1: HTCondor Local Job Submission Overload Control . 121
6.1.3 Case Study 2: HTCondor Distributed Job Submission Overload Con-

trol . 130
6.2 Assessing FCDL and the A Modeling Environment 135

6.2.1 Application . 136

ii

6.2.2 Self-Adaptive Characteristics and Capabilities 136
6.2.3 Quality Attributes . 137
6.2.4 Limitations . 142
6.2.5 Discussion . 143

6.3 Summary . 144

7 Conclusions and Perspectives 145

I Appendices 147

A FCDL Reference 149
A.1 FCDL Graphical Notation . 149
A.2 FCDL Abstract Syntax: Types Packages . 150
A.3 FCDL Abstract Syntax: Instances Package 151
A.4 Scala Implementation of Interaction Contract Inference 152

B FCDL Reference 155
B.1 Abstract Syntax . 155
B.2 Concrete Syntax . 156
B.3 FCDL to FCDL Transformation Rules . 158

C Running Scenario Implementation 161
C.1 Running Example FCDL Definitions . 161
C.2 PeriodicTrigger Implementation . 164

C.2.1 Adaptive Element Delegate . 164
C.2.2 Adaptive Element Act . 165

C.3 ApacheQOS Composite Launcher . 167
C.4 UtilizationMonitor Composite Delegate 167

D Experimental Case Studies Implementation 169
D.1 Case Study 1: HTCondor Local Job Submission Overload Control 169

D.1.1 FCDL Code . 169
D.1.2 Interaction Contracts . 172

D.2 Case Study 2: HTCondor Distributed Job Submission Overload Control . 172
D.2.1 FCDL Code . 172
D.2.2 Interaction Contracts . 174

Bibliography 175

iii

List of Figures

2.1 Feedback control loop block diagram . 9
2.2 Conceptual feedback control loop in software systems 10
2.3 The IBM autonomic element with the MAPE-K reference model 14
2.4 Rainbow Framework [Garlan et al., 2004] . 21
2.5 StarMX Framework [Asadollahi et al., 2009] . 22
2.6 CAPPUCINO Framework [Romero et al., 2010] 24
2.7 DiaSuite Example [Bertran et al., 2012] . 25
2.8 Example of a Ptolemy II model . 26
2.9 Executable Runtime Megamodels Example [Vogel and Giese, 2012] 27

3.1 Block diagram of the running example . 38
3.2 Degradation rate for content tree selection . 39
3.3 FCDL schema of the running example . 42
3.4 FCDL meta-model excerpt related to data type system 45
3.5 FCDL meta-model excerpt related to polymorphic data type system 46
3.6 FCDL meta-model excerpt related to adaptive element types 47
3.7 Example of the of PeriodicTrigger adaptive element type definition 49
3.8 FCDL model of the running example with composites 50
3.9 FCDL meta-model excerpt related to adaptive element composition 51
3.10 An excerpt of the QOSControl composite object model 52
3.11 FCDL schema of the running example with adaptive monitoring 53
3.12 FCDL schema of a dynamic deployment of the running example 54
3.13 FCDL meta-model excerpt related to element distribution 56
3.14 Running example with ApacheWebServer running remotely 56
3.15 FCDL types and instances at two meta-modeling levels 57
3.16 FCDL meta-model excerpt related to instances 58
3.17 FCDL meta-model excerpt related to annotation 59

4.1 Adaptive element director and delegate . 63
4.2 Push communication . 67
4.3 Example of agnostic port mode . 69
4.4 Improved Accumulator processor . 71
4.5 Interaction contracts of the running example adaptive elements 76
4.6 Example of input synchronization . 77
4.7 Example composite for the interaction contract inference illustration 80
4.8 Interaction contract inference algorithm for composites 82
4.9 Example of mapping interaction contract ports into the composite ports . . . 83

iv

4.10 Interaction contracts of the composites from the running example 83
4.11 FCDL meta-model excerpt related to interaction contracts 84
4.12 Differences between adaptive element delegate and act activations 88
4.13 Interaction contract act . 89
4.14 Interaction contracts denotation . 90
4.15 Activation method signatures of the running example adaptive elements . . . 91
4.16 The different levels of FCDL semantic abstraction 92

5.1 Overview of the A modeling support . 94
5.2 An excerpt of the QOSControl composite used for the FCDL illustration . . . 96
5.3 FCDL to JVM model transformation . 106
5.4 Overview of the A code generation support 107
5.5 The hierarchy of the running example actors in the A runtime 108
5.6 Example of an adaptive element director execution 111
5.7 Composite director life-cycle . 112
5.8 Overview of A validation and verification support 113
5.9 The main tasks and artifacts involved in the development process with A 116
5.10 The A modeling environment . 117

6.1 Overview of the HTCondor local overload control scenario. 121
6.2 Relation between queue utilization ρ and number of idle jobs N 123
6.3 Schedd composite . 123
6.4 CondorStats composite. 124
6.5 LocalControl composite . 124
6.6 LocalControl composite extended with adaptive control 125
6.7 Encapsulation of adaptive elements related to system monitoring 126
6.8 Encapsulation of monitoring elements . 126
6.9 HTCondor local job submission behavior with and without control 128
6.10 Overview of the HTCondor distributed overload control scenario. 130
6.11 LocalControl composite for the second case study 131
6.13 Summary of the number of element and SLOC of the case studies 132
6.12 HTCondor distributed job submission behavior with and without control . . 134
6.14 Summary of FCDL and A self-adaptive capabilities 138
6.15 Summary of Ptolemy 2 self-adaptive capabilities 139
6.16 A composite implementation of ProcessCounter 141
6.17 Different levels of abstraction . 144

A.1 FCDL Graphical Notation . 149
A.2 FCDL Types Package . 150
A.3 FCDL Instances Package . 151

B.1 FCDL Abstract Syntax . 155

D.1 Interaction contracts . 172

v

D.2 Interaction contracts . 174

vi

Listings

3.1 Example of adaptive element self-activation . 48
4.1 Example of adaptive element delegate . 64
4.2 Example of an Accumulator adaptive element implementation without an in-

teraction contract . 71
5.1 Xbase implementation of PeriodicTrigger . 102
5.2 Example of the generated Promela code for accessLogParser 114
A.1 Scala implementation of the interaction contract inference 152
B.1 FCDL Concrete Syntax . 156
C.1 FCDL code of the running example as shown in Figure 3.8 161
C.2 Synthesized PeriodicTrigger adaptive element delegate 164
C.3 Synthesized PeriodicTrigger adaptive element act 166
C.4 SynthesizedApacheQOS launcher . 167
C.5 SynthesizedUtilizationMonitor composite delegate 167
D.1 FCDL code of the experimental case study from Section 6.1.2 169
D.2 FCDL code of the experimental case study from Section 6.1.3 172

vii

CHAPTER 1
Introduction

1.1 Context and Motivation

The past two decades have witnessed the proliferation of computing devices alongside
with the development of their raw computing capacities growing at exponential rates.
While only a few years ago, computer systems had occupied a well delimited part of our
lives, today, this is not true anymore as they are present everywhere [Maggio, 2011]. This
phenomenal growth together with the expansion of the Internet have opened a new era
of information accessibility [IBM, 2006]. However, this boom has been also accompanied
with a steep grow of complexity of computing systems, putting enormous demand on the
underlying information technology infrastructure that is now reaching the edge of being
manageable. In his keynote to National Academy of Engineers at Harvard University
in October 2001, IBM senior research vice-president Paul Horn, said: ``In fact, the growing
complexity of the IT infrastructure threatens to undermine the very benefits information technology
aims to provide'' [Horn, 2001].

To give some examples of this complexity increase, consider the following two aspects
of complexity increase: the expansion of the global IP traffic in data centers as a conse-
quence of growing IT infrastructures and the size growth of the software source code.
From 2011 the global data center IP traffic has been growing at annual rate of 31% nearly
quadrupling from 1.7 ZB to 6.6 ZB by the end of 2016 [Cisco Systems, 2012]. The code
size of the most popular HTTP server [Netcraft, 2013], Apache, has been growing steadily
about 100K lines-of-code per year over last 7 years; in the case of Linux Kernel it is more
than 1M [Ohloh, 2013] lines a year.

The complexity increase is not only in the infrastructure and the development, but
also more and more in the operation management. The cost associated with keeping IT
systems in production are growing steadily. These IT systems have become labor inten-
sive and the administrative expenses made up almost entirely of people costs represents
from 60% to 80% of the total cost of information system ownership [CRA, 2003, Sherry
et al., 2012]. Moreover, complex software systems are difficult to configure and manage.

1

. I

For example, the number of configuration directives in Apache HTTP server has almost
doubled from 178 in the version 1.3 to 341 in the 2.4 version. The cost associated with
troubleshooting mis-configured systems is substantial accounting for about 17% of the
total cost of ownership [Attariyan and Flinn, 2010].

So far, the complexity has been managed by skilled IT professionals, but we can al-
ready see that this approach does not scale. Not only because of the increasing costs of
development and operations, but most importantly, it is the demand for the skilled pro-
fessional that is already outstripping its supply [IBM, 2006]. Moreover, the administration
challenges are reaching the point of exceeding the capabilities of human operators [Müller
et al., 2009]. This is becoming a significant limiting factor for further growth of informa-
tion systems and points to an inevitable need for new operation modes to be implemented.
Such operation modes that would make systems smarter, resilient to dynamic changes
and automate their functions in accordance with higher-level policies [Feiler et al., 2006].

Towards Self-Adaptive Software Systems In the last decade, a lot of effort has been
invested into addressing this rapid complexity growth by using technology to manage
technology. The vision is to allow systems to self-manage themselves in order to reduce
the total cost of ownership of complex IT systems [Ganek and Corbi, 2003]. This approach
sought as Autonomic Computing [Kephart and Chess, 2003] or Self-Adaptive Software Sys-
tems [Cheng et al., 2009a] aims at realizing computing systems and applications that man-
age themselves autonomously, with minimal or no human interactions. Such systems
then provide some self-management properties, mainly self-configuration, self-healing, self-
optimization and self-protection. Autonomic1 systems are thus characterized by their ability
to detect, devise and apply adaptations when needed in order to follow some higher-level
goals.

A common approach to engineer these systems is to use Feedback Control Loops (FCL)
that provide generic mechanisms for self-adaptation [Brun et al., 2009]. In its most general
form a FCL is composed of three phases: monitoring, decision-making, and reconfigura-
tion. Monitoring observes the state of the target system and its environment; decision-
making uses observations to determine what actions, among the set of all permissible ac-
tions, should be taken in order to get the system into a desired state; and reconfiguration
performs the actual changes to the application structure or behavior. While the principles
behind a FCL are rather simple, the development of a self-adaptive system is not. There
are many different challenges that have to be overcome in their engineering [Salehie and
Tahvildari, 2009, Brun et al., 2009, Cheng et al., 2009a]. Among them, we are interested in
the issues related to designing self-adaptive systems which can be decomposed into:

1. designing the underlying adaptable software system (the target system),

2. designing the adaptation engine, and

3. forming the architecture connecting them together.

1The origin of autonomic comes from the Greek autonomous, αυτ�νομος, meaning self-governing.

2

1.2. Objectives

The first issue is related to the design for adaptability since for a software to become
adaptable it needs to provide (or allow it to be instrumented to provide) necessary touch-
points, i.e., interfaces exposing running system state and management operations. This
requires significant knowledge about the running system and its API and it might be a
particularly challenging problem for the legacy systems.

Assuming, the target system provides the necessary means to be observed and mod-
ified, the second issue to be solved is related to finding the appropriate control model to
drive the adaptation itself. In its most basic view, decision making merely consists in ob-
serving the state of a system and choosing an action, among the set of admissible actions
for the state. However, it is far from being trivial as it requires a significant amount of
domain-specific knowledge and involves an extensive experimentation with a variety of
FCL procedures and tuning parameters [Hellerstein et al., 2004]. The use of control theory
is often envisaged as a viable solution to design self-adaptive computing systems [Maggio,
2011]. However, there are still unsolved issues that prevents control-theoretical design to
be widely adopted (e.g. a lack of systematic approaches to testing controller implemen-
tations) [Hellerstein, 2010]. Moreover, in the computer science context alone there are no
well-assessed techniques to design such control loops [Maggio, 2011].

Finally, assuming an adaptable target system with designed controllers, the last issue
concerns the interoperability and system-wide architecture of the complete self-adaptive
software system. Implementing and integrating the control model into the underlying tar-
get system is an error-prone and a difficult task. In non-trivial cases, the integration task
includes ensuring that monitoring data are consistently collected across all the sources,
and that adaptation actions are coordinated. Furthermore, while the control model is usu-
ally prototyped in a domain-specific modeling environment such as MATLAB2 [Heller-
stein et al., 2004], often, in the end, the adaptation engine has to be integrated into the
final executable system using some General Purpose Programming Language (GPL) such as
C, C++ or Java. Typically, this integration is done manually by researchers or engineers
requiring an extensive handcrafting of a non-trivial implementation code, particularly
in the case of remotely distributed systems. Moreover, the integration code has to deal
with other software-development related aspects such as error handling and related non-
functional properties. This is both a cumbersome and an error-prone activity. As a result,
these handcrafting of implementations gives rise to significant accidental complexities3, i.e.,
complexities that are caused by the approach chosen to solve the problem [Brooks Jr.,
1987] and which are already considerable with the complexity of contemporary software
systems.

1.2 Objectives

With respect to the discussed situation, the context of the research work is as follows:

2http://www.mathworks.com/products/matlab
3Sometimes, a term incidental complexity is used instead in order to stress the fact that the complexity is ``hap-

pening in connection with or resulting from something more important'' rather than ``occurring by chance, unexpectedly,
or unintentionally'', Collins English Dictionary, HarperCollins Publishers, 2003.

3

http://www.mathworks.com/products/matlab

. I

Despite the advances in self-adaptive software systems engineering, there is still a
need for an integrated approach that would reduce the accidental complexities associated
with forming the architecture connecting an adaptation engine into an adaptable target
system. Therefore, the main objective of this work is to present an approach that facilitates
developers in integrating self-adaptive mechanisms into software systems through external Feed-
back Control Loops. To address the accidental complexities outlined above in this work we
define the main goal as:

Provide researchers and engineers with a flexible abstraction and extensible tool support facili-
tating its use to allow them to experiment and to put easily self-adaptation in practice, without the
need for coping with low-level implementation and infrastructure details.
We then decompose the goal into the following objectives:

1.1. Create a flexible model for feedback control architectures that allows fine grain de-
composition of loop elements and raises the level of abstraction at which these ele-
ments are described.

1.2. Provide a set of model-transformation tools to facilitate the use of the model and to
automate the development process where possible.

1.3 Contributions

The goal set for this work consequently leads to the following main contributions.
The model-driven software development approach providing a systematic way to in-

tegrate self-adaptation capabilities into software systems based on external feedback con-
trol loops. Concretely, we propose a domain-specific modeling language offering flexible
high level abstraction for describing FCL architectures as a hierarchically composed net-
works. The elements in these networks represent both the individual processes of the
FCLs as well as the target systems via their introspection and management interfaces.
The language supports distribution and reflection thereby enabling coordination of mul-
tiple remotely distributed control loops using various control schemes. The use of the
language is facilitated by a modeling environment that allows for a modular specification
and configuration of both structural and behavioral parts of the system aiming at com-
plex, reusable and coordinated control loops. The environment further supports verifica-
tion of architecture consistency including user-defined invariants as well as connectivity
and data reachability properties through external verification. The resulting architecture
models are used as inputs into a source code generator that synthesizes complete exe-
cutable software artifacts so the described control loop can be instantiated and run.

1.4 Outline

Chapter 2 presents the state of the art of self-adaptive software systems. It introduces
their background, reviews the principles behind feedback control loops and its ap-
plication to software. Then it gives an overview of related work and provides moti-
vation of our objectives. Parts of this chapter were published in [Collet et al., 2010].

4

1.4. Outline

Chapter 3 is the first chapter of our contribution. It gives the rationale behind the selected
approach and introduces a running adaptation scenario that is used throughout the
work to better illustrate the approach. The main part of this chapter details the
abstract syntax of our domain-specific modeling language and presents its graphical
notation. This chapter is based on the work published in [Krikava and Collet, 2011,
Krikava et al., 2011, 2012].

Chapter 4 complements the abstract syntax of the domain-specific language with a model
of computation and a notion of interaction contracts that together define operational
rules governing interactions among the feedback processes. This chapter was par-
tially published in [Krikava and Collet, 2011, Krikava et al., 2011, 2012].

Chapter 5 presents the implementation of the language and the associated tool support
for modeling, code generation and verification including their integration into a de-
velopment environment. This chapter was partially included in[Krikava et al., 2012,
Krikava and Collet, 2012b].

Chapter 6 provides an evaluation of the two approaches. Two additional end-to-end
case studies are implemented to further demonstrate the capability of the domain-
specific modeling language and the modeling environment. This is followed by a
discussion about applications, capabilities and an overview of the software qual-
ity attributes of both contributions. Some of the results of this chapter were part
of [Krikava and Collet, 2011, 2012a].

Chapter 7 summarizes the dissertation and recalls its contributions. It outlines future
work and concludes with a discussions on longer-term perspectives and further re-
search directions.

Throughout this work we use the Scala programming language [Odersky et al., 2004]
to illustrate the described concepts.

5

CHAPTER 2
Self-Adaptive Software Systems

Self-adaptation is a general mechanism of a behavioral adjustment in a response to an
environmental change and it is applicable across a wide range of systems. In this work we
focus solely on its application in the software domain1 referred to as self-adaptive software
systems [Cheng et al., 2009a].

In this chapter we describe the context and give an overview of the state of the art of
the self-adaptive software system engineering related to the approach followed by this
work. That is, integration of self-adaptive mechanisms into software systems through
external feedback control loops. We start by a general introduction to the principles of
self-adaptation in software systems, present feedback control loop and its application to
software followed by the concepts of autonomic computing. Next, we outline some of
the existing approaches for engineering these systems. At the end we discuss the issue
related to the integration of self-adaptive mechanisms into software systems.

2.1 Principles

Traditionally, software systems have been designed as open-loop systems primarily focus-
ing on the correctness of their functions. Indeed, over the years, the software engineering
discipline has been concerned with tools and methods facilitating the development of
functionally correct software [Abdelzaher et al., 2003], emphasizing the static structure
of the system and, to some extent, neglecting their dynamics aspects [Brun et al., 2009].
Once a system is designed and deployed to deliver certain functionality to its users, the
functional properties remain mostly unchanged. Therefore, a correct software system op-
eration usually requires human supervision. In cases of its malfunction, i.e., when the
system goes beyond its acceptable operating bounds, the responsibility of troubleshoot-
ing and fixing problems relies on a human administrator. Besides that human adminis-
trators are prone to long reaction time largely depending on their expertise, the course of

1Self-adaptation might be present at different layers along system domain dimensions for example it can be
also embedded in the hardware layer (e.g., self-diagnosing or self-tuning devices)

7

. S-A S S

actions often implies restarting a part or the entire system leading to an unwanted system
downtime [Garlan et al., 2004].

Because of the complexity of the contemporary software systems, especially the sys-
tems dealing with distributed applications and environment uncertainty, and costs as-
sociated with operations and system outages, there is a high-demand for management
automation. This demand has led scientists and engineers to look for alternative ways to
design and manage software, seeking an inspiration in diverse related fields such as con-
trol theory, biology, robotics and artificial intelligence [Cheng et al., 2009a]. One of the
most promising research directions in this endeavor is in self-adaptation where systems
are enriched with the capacity to autonomously adjust their behavior in response to ob-
served changes in their contexts. Traditionally, self-adaptive systems have been used in
a number of different areas. While it is not new in the software domain, it has been only
recently that supporting some form of self-adaptation has become a critical requirement
of software systems.

Similarly to the advent of the Internet, one of the notable early self-managing projects
had been for military applications initiated by the DARPA2 agency. In 1997 they started a
project called Situational Awareness System3 followed by the DASADA4 project in 2000.
The objectives were to research and develop technologies that would enable mission-
critical systems to meet high-assurance, dependability, and adaptability requirements,
essentially dealing with the complexity of large distributed software systems [Huebscher
and McCann, 2008]. The DASADA project lead to pioneer an architecture-driven ap-
proach to self-management using a notion of monitors and adaptation engines for op-
timizing system operation based on observed data. The objectives and approach were
close to what had been later proposed by the IBM's autonomic computing initiative (cf.
Section 2.1.3).

2.1.1 Feedback Control Loop

The main principle behind any self-adaptation is in regulating system characteristics in
response to a system or environmental state change. As the self prefix suggests, both
the regulation and the state observation is done autonomously by the system itself with
minimal or no human interventions. While there are different forms of self-adaptation
mechanisms, in general, they involve some sort of feedback [Brun et al., 2009].

Feedback is generally defined as ``information about the gap between the actual level and the
reference level of a system parameter which is used to alter the gap in some way.'' [Ramaprasad,
1983]. It means that an information is a feedback only if it is translated back into an action
performed onto a system from which it has originated. The main idea of feedback control
loop is to observe system's output properties, such as throughput or utilization and then
to use them to alter the system parameters, such as queue size or scheduling policies in
order to meet specified goals. Because the output properties are used to adjust the in-

2Defense Advanced Research Projects Agency: http://www.darpa.mil
3http://www.darpa.mil/ato/programs/suosas.htm
4http://www.rl.af.mil/tech/programs/dasada/program-overview.html

8

http://www.darpa.mil
http://www.darpa.mil/ato/programs/suosas.htm
http://www.rl.af.mil/tech/programs/dasada/program-overview.html

2.1. Principles

put (control) parameters, and these inputs then in some way should affect the outputs,
the architecture is called feedback control loop or closed loop [Hellerstein et al., 2004]. An
alternative to closed-loop feedback control is open-loop control sometimes referred as feed-
forward control. It is a technique that does not observe the target system and uses only
the reference input for the control [Hellerstein et al., 2004]. In this text we are concerned
with engineering closed loop systems. The open loop systems can always be created by
removing feedback.

Controller Target System

Set
Input

Control
Error

Control
Input

Disturbance
Input

Noise
Input

Measured
Output

Transduced
Output

Transducer

+
-

Figure 2.1: Conventional block diagram of a feedback control system. The set input is a reference
value desired to be system's measured output. The controller adjusts the control input to align the
system's output and the reference value. The transducer optionally filters (average, aggregate) the
output values.

Figure 2.1 shows a classical block diagram of a single-input, single-output feedback con-
trol system. Block diagrams are used in control theory to model feedback or feedforward
systems using components and signals that flow between them. A block in the diagram
represents a system component (that can be the system itself) often labeled with the trans-
fer function5 it represents. The block diagram provides a useful and simple method for
graphical analysis and reasoning about the control systems.

To illustrate the main principles of a feedback loop we take a canonical example of tem-
perature control that is featured in many control engineering textbooks [Doyle et al., 1992,
Hellerstein et al., 2004, Aström and Murray, 2009]. Consider an ordinary heating-control
thermostat. This device measures the temperature (measured output) of a house (environ-
ment) and compares it with the desired set-point (set input). The feedback error between
the two values (control error) is used to operate the house heating (target system), i.e., to
turn it on shall the measured temperature be too low or turn it off shall the temperature
be too high. However, because of the lags and delays in the heater and the temperature
sensor, the control model in the thermostat should do a bit of an anticipation, turning the
heater on or off before the feedback error actually changes sign. Otherwise, the temper-
ature would oscillate and there would be a lot of power-cycling in the heater, which on a
longer run might cause a severe damage to the heating system.

Feedback systems have some very good properties. As pointed by Karl Aström the
``magic of feedback'' [Aström, 2006] is that it can create a system that performs well from

5A transfer function describes how an input is transformed into the output. For example, a transfer function
of a controller defines how a control error is used to compute the control input.

9

. S-A S S

components that performs poorly, make a system insensitive to disturbances and com-
ponent variations, stabilize an unstable system and create desired behavior (e.g., linear
behavior from nonlinear components). On the other hand, as it has been shown in the
above example, the major drawback of a feedback control is that it can cause instabilities.

2.1.2 Applications to Software Systems

In software systems, the feedback control is employed to steer the decisions that would
be typically done at design-time, but instead, are moved towards runtime [Brun et al.,
2009]. These decisions are therefore reassigned from software engineers and system ad-
ministrators to the system itself [Andersson et al., 2012]. In other words, a key point of
self-adaptive software is that its life-cycle continues after system deployment and that
the system keeps evaluating its operational characteristics and responds to changes it ob-
serves at runtime [Salehie and Tahvildari, 2009].

Monitoring Reconfiguration

Decision Making

sensors effectors

process

interface

data flow

Target System

events actions

measures decisions

Figure 2.2: Conceptual feedback control loop in software systems

While it is conceptually the same, in the case of software systems the feedback loop is
usually presented as a three or four steps process involving monitoring, decision-making
and reconfiguration activities as depicted in Figure 2.2. The three main processes are:

- Monitoring. It is responsible for using sensors to collect all relevant measurements about
the target system state. This may include any necessary data preprocessing such as
filtering and stabilization mechanisms, conversions or rule inference.

- Decision-making. It essentially accounts for choosing an appropriate action among the
set of all permissible actions. The actions are chosen based on the observed state of
the target system following the system objectives. It is usually driven by some control
model representing the structure and/or the behavior of the target system.

- Reconfiguration. It carries out the chosen action using the target system's effectors. This
may be either a primitive action or a complete workflow of actions orchestrating the
provided effectors in order to get the system into the desired state requested by the
decision-making process.

10

2.1. Principles

Figure 2.2 shows a single feedback control loop. While it is obviously easier to design
and reason about a single control loop, in practice, usually multiple separate loops are
involved [Vromant et al., 2011]. In general, following the good engineering practice, the
aim is to minimize the number of control loops or to decouple them in respect to time or
space [Müller et al., 2009]. For example, one possibility is to compose loops in a hierarchi-
cal organization implementing the divide-and-conquer like concept. In this scheme, the
loops at the higher levels influence the loops at lover levels, but usually operate at differ-
ent time scales avoiding unexpected interference. This scheme is used in the autonomic
computing reference architecture (cf. Section 2.1.3 on page 13). Next to this hierarchical
organization, there exists a variety of different control schemes [Patikirikorala et al., 2012]
with different levels of controller decoupling. What is important, however, is that the de-
sign should always make the loop interaction explicit and define how these interactions
are handled. Any self-adaptive system architecture should therefore make the control
loops explicit. Furthermore, it should to highlight some of the key aspects such as struc-
tural arrangements (e.g., sequential, parallel, hierarchical, decentralized), interactions and
data flow [Müller et al., 2009, Brun et al., 2009].

The feedback control loop in software systems is sometimes also referred to as auto-
nomic control loop [Brun et al., 2009] or adaptation loop [Salehie and Tahvildari, 2009]. It is
important to note, that there exist different conceptual representations of this loop. Liter-
ature following the IBM MAPE-K decomposition of a feedback loop (cf. Section 2.1.3 on
page 13) includes an extra process between the monitoring and decision-making that is
usually called analyzing or detecting being responsible for analyzing the symptoms from
the monitoring process, detecting when a change is required. Others [Brun et al., 2009,
Dobson et al., 2006] are using Collect-Analyze-Decide-Act loop process refining the AI com-
munity's Sense-Plan-Act approach from the 1980s [Gat, 1998, Nilsson, 1980]. Another stud-
ies [Bertran et al., 2012, Cassou et al., 2011] use the notion of Sense / Compute / Control (SCC)
architectural pattern that is based on the work of Chen et al. [Chen and Kotz, 2002] and
Taylor et al. [Taylor et al., 2010]. The SCC application pattern involves four layers: sensors,
context operators, control operators and actuators that intuitively map to the feedback control
loop introduced above. Similarly to [Ramirez and Cheng, 2010], in this work we use the
three process representation as it is closer to the block schema from the control theory
and we find it more generic and easier to use.

The monitoring and reconfiguration processes of the feedback control loop are built on
the top of sensors and effectors. They are the manageability endpoints of the target system
called touchpoints representing the interfaces introspecting the system state and expos-
ing its management operations. They are an important part of any self-adaptive software
system as the adjacent control can only be based on the information and management op-
erations available from the connected sensors and effectors. Usually one of the first step in
realizing self-adaptation in software is a clear identification of the accessible touchpoints.

From the separation of concerns perspective in respect to the control mechanisms and
application logic, the adaptation can be divided into two categories: internal and external.
The former one intertwines the application and adaptation functionality and embeds di-

11

. S-A S S

rectly in the target system code base while the latter one encapsulates the control into an
external adaptation engine running in parallel with the target system [Salehie and Tahvil-
dari, 2009]. The main drawback of the internal adaptation is that it is usually hard-coded
and hidden in the application code, and therefore difficult to analyze, verify, modify or
extend. The external adaptation is on the other hand built separately, making it easier to
reason about the control behavior. It separates the concerns of the target system function-
ality from that of adaptation. It allows one to built adaptation on top of legacy systems
where the source might not be always available. Moreover, externalizing the adaptation
potentially enables its further reuse across multiple adaption scenarios and systems. The
main drawback of the external approach is however in assuming that the target system
can provide (or can be instrumented to provide) all the necessary endpoints for its ob-
servation and consequent modification. This assumption seems reasonable since many
of the systems already provide some interfaces (e.g. tools, services, APIs) for their ob-
servation and adjustment [Garlan et al., 2004]. Generally, externalizing the adaptation
has a number of benefits and therefore in this work we are concerned with the external
approach.

The conceptual model of the feedback control loop as introduced in this section pro-
vides an overview of a possible architecture for self-adaptive systems. However, because
of its generality it serves merely as guidelines for high-level system implementations.
Some details, especially those related to the decision-making part can be drawn on to
control theory. Control theory uses feedback loop as its central element and provides
well-established mathematical models, tools, and techniques for a systematic approach
for designing control loops that are stable and accurate [Abdelzaher et al., 2008]. In partic-
ular, Hellerstein et al. [Hellerstein et al., 2004] provide a comprehensive overview about
the capabilities offered by control theory and their application to computing systems.
Furthermore, Shaw [Shaw, 1995] compares the suitability of control loops as a software
engineering methodology stating that ``when the execution of a software system is affected by
external disturbances forces or events that are not directly visible to or controllable by the software
this is an indication that a control paradigm should be considered for the software architecture''.

The essence of a good control lies in defining a suitable model that enables to quan-
tify the control objective. This is, however, far from being trivial. It requires a significant
amount of domain-specific knowledge and involves an extensive experimenting with a
variety of FCL procedures and tuning parameters. While some fields, e.g., performance
engineering and queuing theory already provide mature models, in many other applica-
tion domains it is yet not the case and it is difficult to model the relationships between
controlled inputs and outputs [Müller et al., 2009]. Moreover, there is a certain accessibil-
ity gap of control theory for computer practitioners, although the Hellerstein's book fills
a great part of this gap.

2.1.3 Autonomic Computing

While the idea of self-adaptive software systems had not been new, the major break-
through came with the IBM's autonomic computing initiative. Originating in the IBM's

12

2.1. Principles

manifesto [Horn, 2001] from 2001, the concept of Autonomic Computing (AC) found an in-
spiration in biological systems. It suggests to compare complex computing systems to
the human body that is an extremely complex system in itself, but it has an autonomic
nervous system (ANS). The ANS that takes care of most bodily functions (body temper-
ature, heart rate, blood pressure, breathing rate, and many more involuntary reflexive
responses), thereby removing from our consciousness the task of coordinating all our
bodily functions. What is the most fundamental is that it does it autonomously, without
any conscious recognition or effort in one's part allowing one to focus on goals (what to
do) rather than on means (how to do). One of the best examples6 of this is given in the
manifesto [Horn, 2001]: ``You can make a mad dash for the train without having to calculate
how much faster to breathe and pump your heart, or if you'll need that little dose of adrenaline to
make it through the doors before they close.''

The later published architectural blueprint [IBM, 2006] proposes the first architecture
for self-adaptive systems that explicitly exposes the feedback control loop [Brun et al.,
2009]. The AC architecture aims at fundamental goals describing: the external interfaces
and behaviors required of individual system components, how to compose these compo-
nents so that they can cooperate toward the goals of system-wide self-management, and
how to compose a system from these components in such a way that the system as a whole
is self-managing [IBM, 2006].

As stated in the seminal paper by Kephart et al. [Kephart and Chess, 2003] the essence
of AC is system self-management. The idea is that system administrators should become
free from the low-level administration management and instead focus on defining higher-
level goals for the autonomic system to follow. Yet, they should still remain in the loop by
assisting and approving the self-management process.

The IBM's autonomic vision has been also followed by other initiatives from the com-
puting industry [Müller et al., 2009] such as: Sun's N1 System Management Program
to enable application development across heterogeneous environments in a consistent
and virtualized manner7, Microsoft's Dynamic Systems Initiative technology strategy for
products and solutions to help businesses meet the demand of a rapidly changing and
adaptable environment [Microsoft, 2004], Hewlett-Packard's approach to autonomic com-
puting is reified in its Adaptive Enterprise Strategy [HP, 2003], or Intel with its involve-
ment in the development of standards for autonomic computing [Tewari and Milekovic,
2006].

Autonomic Element and MAPE-K Autonomic Loop The IBM's blueprint also intro-
duced the Autonomic Computing Reference Architecture (ACRA) with a notion of an auto-
nomic element as a fundamental building block for designing self-adaptive systems. An
autonomic element (Figure 2.3) consists of an autonomic manager and managed resource. An
autonomic manager represents the controller and implements the self-managing behavior

6While the comparison with natural systems seems to light the vision, after a decade of Autonomic Com-
puting, no work on applying ANS principles to autonomic computing has been undertaken [Kephart, 2011].

7After acquisition of Sun Microsystems by Oracle Corporation, the development of the N1 Service Provision-
ing has ceased. http://www.oracle.com/technetwork/documentation/legacy-ent-computing-193035.html

13

http://www.oracle.com/technetwork/documentation/legacy-ent-computing-193035.html

. S-A S S

Autonomic Element

Autonomic Manager

Managed Resource

Sensors Effectors

Sensors Effectors

Monitor

Analyze Plan

Execute
Knowledge

Sensors Effectors

Figure 2.3: The IBM autonomic element with the MAPE-K reference model

using an autonomic control loop [IBM, 2006] which is often called the MAPE-K (Monitor,
Analyze, Plan, Execute, Knowledge) loop. A managed resource represents the target system,
i.e., the running process, with two manageability interfaces: sensors and effectors.

The MAPE-K control loop shown in Figure 2.3 is conceptually similar to the feedback
control loop from the classic control theory (cf. Section 2.1.2). It consists of four processes
organized around a common Knowledge element representing the shared management
data [IBM, 2006]:

− Monitor provides the mechanisms to collect, aggregate, filter and report monitoring
data collected from a managed resource through sensors.

− Analyze provides the mechanisms that correlate and model complex situations and al-
low the autonomic manager to interpret the environment, predict future situations,
and diagnose the current state of the system.

− Plan provides the mechanisms that construct the actions needed to achieve a certain
goal, usually according to some guiding policy or strategy.

− Execute provides the mechanisms to control the execution of the plan over the managed
resources by means of effectors.

The architecture follows the form of an external feedback loop. Moreover, an auto-
nomic element itself can also be considered as a managed resource and it can also be
controlled via the sensors and effectors that it exposes. This allows to build a hierarchical
structure of feedback loops (cf. Section 2.1.2) and offers a separation of concerns regarding
the overall system goals. The ACRA reference architecture defines a three-layer hierarchy

14

2.1. Principles

of orchestrating managers, resource managers, and managed resources which all share
management data via a service interface [IBM, 2006]. The low-level autonomic managers
near the managed resources control short term goals tuning directly parameters of the
adjacent resources. The higher-level autonomic managers on the other hand participate
in a more global view of the system and handle long term goals such as load balancing
or higher-level modification of the system architecture. An autonomic element serves as
the fundamental building block for realizing the self-* properties.

Self-* Properties Next to the concept of the autonomic element and MAPE-K loop, IBM
has also distilled one of the initial set of the self-* properties also known as adaptivity prop-
erties [Salehie and Tahvildari, 2009]. They encapsulate the eight main autonomic charac-
teristics from the original manifesto [Horn, 2001] and have been defined in accordance to
self-adaptation mechanisms found in nature [Kephart and Chess, 2003]. The main self-*
properties includes: (1) self-configuring, (2) self-healing, (3) self-optimizing and (4) self-
protecting [IBM, 2006]. It is, however, mostly the self-optimization that has been targeted
by the research community. In his ICAC'11 keynote Autonomic Computing: The First Decade
[Kephart, 2011], Jeff Kephart states that the preponderance of work in the field continues to
focus on self-optimization with the other self-* properties receiving far less attention. The
main reason is that it is easier to define benchmarks for self-optimization than for the other
self-* and ``benchmarks drive the innovation.''. According to Selehie and Tahvildari [Salehie
and Tahvildari, 2005] the self-* properties are linked to software quality metrics which
could help define and understand these properties better and to utilize the existing body
of knowledge on quality factors, metrics, and requirements, in developing and operating
self-adaptive software.

Relation to Self-Adaptive Software Systems It is difficult to draw a real distinction
between the self-adaptive software systems and the self-managing autonomic comput-
ing systems. In most of the related literature, we find that authors are using the terms
self-adaptive (with or without adding software systems), autonomic computing, and self-
managing interchangeably. In a recent survey by Salehie and Tahvildari [Salehie and
Tahvildari, 2009], the authors tries to make some comparison concluding: ``From one point
of view, the self-adaptive software domain is more limited, while autonomic computing has emerged
in a broader context. This means self-adaptive software has less coverage and falls under the um-
brella of autonomic computing. From another point of view, we can consider a layered model for a
software-intensive system that consists of: application(s), middleware, network, operating system,
hardware [McKinley et al., 2004], and sub-layers of middleware [Schmidt, 2002]. According to
this view, self-adaptive software primarily covers the application and the middleware layers, while
its coverage fades in the layers below middleware. On the other hand, autonomic computing covers
lower layers too, down to even the network and operating system... However, the concepts of these
domains are strongly related and in many cases can be used interchangeably.'' To the best of our
knowledge there is no explicit comparison between these two and in this work we also
consider them to be the same.

15

. S-A S S

2.2 Related Work

There is a vast body of work on self-adaptive software systems and autonomic computing
coming from different communities exploring the field from different perspectives. On
the one hand this leads to a variety of innovations and overall understanding, but on
the other hand, because the communities are rather loosely coupled, it also leads to the
fragmentation of the field and to the development of different terminologies. Another
difficulty in studying related work lies in the fact, that often it is difficult to infer some of
the technical details and limitations of the presented work as they are not discussed8.

In this section we give an overview of a selected work that is related to engineering
of self-adaptive software systems and that we have identified as the most relevant to the
context of this work. The study is organized into two parts. In the first part, we give
a brief overview of the selected projects and techniques that aim at facilitating develop-
ment of self-adaptive software systems (Section 2.2.1). This includes framework-based
approaches, work enabling self-adaptation in the target system (e.g. dynamically adap-
tive middleware) and solutions for engineering parts of the adaptation engine (e.g. ad-
dressing monitoring or applying a particular decision-making technique). The intention
is not to provide a exhaustive survey of engineering approaches of self-adaptive software
systems, but rather to give an overview of the existing systems and techniques. Neverthe-
less, we believe that the included technologies and projects represent the most relevant
approaches with respect to our aim. The selection has been mainly based on the following
surveys:

− Huebscher and McCann, A survey of autonomic computing: degrees, models, and applica-
tions [Huebscher and McCann, 2008]

− Salehie and Tahvildari, Self-adaptive software: Landscape and research challenges [Salehie
and Tahvildari, 2009]

− Cheng et al., Software engineering for self-adaptive systems: A research roadmap [Cheng et al.,
2009a]

− Villegasetal et al., A framework for evaluating quality-driven self-adaptive software systems
[Villegas et al., 2011]

In the second part, we provide more details about some of the projects (marked by †

in the first part) that aim at providing a more generic approach for engineering complete
self-adaptive software systems (Section 2.2.2). The projects were selected because (1) they
show some of the representative frameworks, middleware and model-based including
model@run.time approaches, and (2) they are close to our focus and had the most influ-
ence on our design.

8Weyns et al. [Weyns et al., 2012], surveys 96 publications from SEAMS and the associated Dagstuhl seminar
between the years 2006 and 2011 reporting that the majority of the studies discusses no limitations and that in
most cases assessment methods, tools and data are not publicly available.

16

2.2. Related Work

2.2.1 Approaches Facilitating Self-Adaptation

The overview starts with framework-based approaches and solutions oriented towards
adaptive middlewares. This is followed with an outline of model-based techniques and
work related to feedback control and control theory.

Frameworks IBM proposed a form of standardized approach for autonomic systems
using the MAPE-K decomposition and the ACRA architecture [Kephart and Chess, 2003,
IBM, 2006] (cf. Section 2.1.3 on page 13). Following these general principles, a number of
framework-based approaches have been developed focusing on different aspects of self-
adaptation in software systems.

Litoiu et al. [Litoiu et al., 2005] describe a hierarchical framework that accommodates
scopes and timescales of control actions, and different control algorithms. Their archi-
tecture considers three main types of controllers reflecting the three different stages that
they focus on: tuning, load balancing, and provisioning. Rainbow† [Garlan et al., 2004]
is a framework for developing architecture-based self-adaptation providing a reusable
infrastructure (cf. page 20). StarMX† [Asadollahi et al., 2009] is designed for building
self-managing Java-based applications using closed feedback control loops. It uses Java
Management Extension (JMX) for target systems touchpoints and a policy-rule language or
Java code for adaption engine implementation (cf. page 21). Similarly, Autonomic Manage-
ment Toolkit (AMT) [Adamczyk et al., 2008] and Adaptive Server Framework (ASF) [Gorton
et al., 2006] frameworks are employing rule engines for reasoning and decision making,
and JMX touchpoints for building self-adaptive Java-based systems. A different approach
enabling adaptable behavior in Java applications is followed by TRAP [Sadjadi et al., 2004],
a framework that uses a combination of behavioral reflection and Aspect-Oriented Program-
ming (AOP). Reflection and AOP techniques are also explored by Cámara et al. [Cámara
et al., 2007] to develop a dynamic adaptation management framework that provides a
basic infrastructure for a non-intrusive, semi-automatic approach of syntactical and be-
havioral adaptation.

Different approaches focuses on component adaptations. For example, K-components
[Dowling and Cahill, 2004] introduces a component model enabling individual compo-
nents self-adaption. They also include decentralized coordination models for collective
adaptation of components groups based on machine learning techniques. CASA [Mukhija
and Glinz, 2005] is a framework enabling dynamic application adaptation that supports
various adaptation mechanisms including dynamic recomposition of application compo-
nents. JADE [Bouchenak et al., 2005] presents a dynamically configurable component-
based architecture based on a FRACTAL component model for autonomous repair man-
agement in distributed systems such as J2EE server clusters.

Some frameworks focus on managing the Quality of Service (QoS) in Service Oriented Ar-
chitectures (SOA). For instance, MOSES [Cardellini et al., 2009], a methodology and a pro-
totype tool, aims at driving the self-adaptation of a SOA system to fulfill non-functional
QoS requirements such as system performance, reliability, and cost. SCeSAME [Tamura
et al., 2010] proposes a component architecture for self-reconfiguration as an action asso-

17

. S-A S S

ciated to QoS contracts violation. FUSION [Elkhodary et al., 2010] uses feature-oriented
system models for learning impacts of adaption decisions on the system goals using re-
inforcement learning techniques. This knowledge is then used for automatic tuning of
adaptation logic and runtime analysis.

Middlewares Next to frameworks, research in self-adaptive software systems has also
focused on extending middlewares with self-adaptation capabilities to provide adapta-
tion services separating applications from operating systems and network communica-
tions [McKinley et al., 2004]. These approaches aim at shielding developers from com-
plex tasks such as resource distribution, component probing, network communication or
application reconfiguration [Ramirez and Cheng, 2010]. On the other hand, middleware
poses highly-specific execution environments which might not be directly applicable for
some systems.

Océano [Appleby et al., 2001] is a Service-Level Agreement (SLA) based environment that
aims at providing a highly available, scalable and manageable infrastructure. It can dy-
namically reallocate resources in response to changes in application load (e.g. allocation
of servers for increased processing capacity or throttling network bandwidth when addi-
tional servers are unavailable) while preserving some security and isolation requirements.
Adaptive CORBA Template [Sadjadi and McKinley, 2004] focuses on adaptive CORBA [Ob-
ject Management Group, 2012a] applications including legacy systems without the need
to change their source code. It transparently weaves adaptive behavior into object re-
quest brokers at runtime in response to changes in requirements and environmental con-
ditions, supporting quality-of-service and fault tolerance. M-Ware [Kumar et al., 2007]
provides a self-adaptive middleware solution that aligns automated system administra-
tion with business policies to maximize business utility in the domain of business infor-
mation stream management. The adaptation is expressed using an enterprise environ-
ment model (e.g., response-time, customer-priory) and a utility functions measuring the
business value of a given environment state.

The use of self-adaptive mechanisms has been also actively studied in the domain
of mobile and ubiquitous computing to prevail an uncertainty and unexpected changes
in the target system execution context. The MADAM [Floch et al., 2006] project aims
at facilitating development of adaptive applications for mobile computing. It employs
explicit architecture-centric approach using models for information including structural
and distribution aspects together with utility functions for comparing their variability.
CARISMA [Capra et al., 2003] is a middleware for mobile computing exploiting the prin-
ciple of reflection to facilitate construction of adaptive context-aware interactions between
mobile applications. The adaptation is described using policies based on microeconomic
sealed-bid auction approach. MUSIC [Rouvoy et al., 2008] is a QoS-driven generic middle-
ware for self-adaptive mobile applications for ubiquitous environments where the avail-
ability and the quality of offered remote services change. It exploits these changes by dis-
covering, evaluating and binding remote services available in the surroundings of mobile
devices. Similarly, CAPPUCINO† [Romero et al., 2010] is also based on a device-centric

18

2.2. Related Work

utility-based approach to support context-aware Web Services execution in ubiquitous
environments (cf. page 23).

Model-Based Approaches Zhang and Cheng [Zhang and Cheng, 2006] introduce an
approach to create formal models for behavior of adaptive programs, to automatically
analyze them, and generate their implementations. Their approach separates adaptation
behavior and non-adaptive behavior specifications thereby making the models easier to
specify, inspect and modify. Further, Ramirez and Cheng [Ramirez and Cheng, 2010]
study adaptation-oriented design patterns that support the development of adaptive sys-
tems. They harvest 12 designs that support different FCL phases and that facilitate the
separate development of the functional logic and the adaptive logic.

The use of model as a formal specification of self-adaptive software systems is also
proposed by Weyns et al. [Weyns and Malek, 2010] using their FORMS reference model.
FORMS is a formal reference model based on the MAPE-K (cf. Section 2.1.3 on page 13)
supporting composition of adaptation mechanisms, allowing one to capture their key
characteristics and compare alternative solutions. Another reference model for engineer-
ing self-adaptation is DYNAMICO [Villegas et al., 2013]. It is based on a three-layer ar-
chitecture defining three types of FCL, each managing different parts of context dynam-
ics (control objectives, target system adaptation and dynamic monitoring). Hebig et al.
[Hebig et al., 2010] proposes a UML profile for explicit architecture of several coordinated
control loops using component diagrams allowing to specify interactions between them.

Several approaches are exploiting the use of model-driven engineering techniques for
self-adaptive software systems. Genie [Bencomo et al., 2008] uses models for specification
and generation of middleware-based software artefacts. It utilizes architectural models to
support generation and execution of adaptive systems for component-based middleware
technologies. The adaptive logic is specified as state machines, with each state being a
system configuration and transitions being reconfiguration scripts. J2EEML [White et al.,
2005] relies on models for describing design of Enterprise Java Beans (EJB) applications9,
their QoS requirements, and autonomic properties. This is accompanied with tools for
code generation, automatic checking of model correctness, and visualization of complex
QoS and autonomic properties. Diasuite† [Bertran et al., 2012] is a tool suite based on gen-
erative programming to engineer SCC applications, providing support that covers the
whole SCC development process (cf. page 24). Ptolemy† [Eker et al., 2003] is a model-
ing environment implementing an actor-oriented design methodology and hierarchical
heterogeneity suitable for designing and simulating control systems (cf. page 25).

A different model-based approach to self-adaptive software engineering is based on
the idea of using models and model-driven engineering techniques at runtime instead of
at design time. The model@run.time or runtime model represents an abstraction of a running
system or its part and can be used to support dynamic adaptation of structure, behavior
or goals of the underlying software systems [France and Rumpe, 2007]. This abstraction is
causally connected with a given system during its actual execution. The causal connection

9http://www.oracle.com/technetwork/java/javaee/ejb/index.html

19

http://www.oracle.com/technetwork/java/javaee/ejb/index.html

. S-A S S

allows the model to provide up-to-date information about the state of the system and
enables the adaptations to be done at the model level rather than at the system level [Blair
et al., 2009]. For example, DiVA [Morin et al., 2009] and the following Kevoree [Fouquet
et al., 2012a] projects use architectural models at runtime for dynamic adaptation, together
with modeling some other aspects such as variability, system context and adaptation logic.
It also employs MDE techniques to produce reconfiguration scripts that perform the actual
adaptation. Another approach in model@run.time is taken by Vogel and Giese [Vogel
and Giese, 2012] providing domain-specific modeling language for representing software
systems and adaptation mechanisms using Executable Runtime Megamodels† (cf. page 27).

Feedback Control and Control Theory There has also been a considerable effort in feed-
back control and control theory application for software systems. We have already men-
tioned the work by Hellerstein et al. [Hellerstein et al., 2004] that provides a concrete ap-
proach for designing feedback control mechanism for computing system based on control
theory.

There have been many studies employing a particular control technique. Patikiriko-
rala et al. [Patikirikorala et al., 2012] conducted an extensive survey of 158 papers using
control engineering approaches for designing self-adaptive software systems. It shows
that the use of control theory is indeed very relevant and presents a classification of the
approaches harvesting some common design patterns used for controller design. Among
the studies within the survey, we mention Abdelzaher et al. [Abdelzaher and Bhatti, 1999,
Abdelzaher et al., 2002] work on Quality of Service (QoS) management of web servers using
adaptive content delivery. We reuse their scenario in this work to illustrate our approach
on a real adaptation scenario (cf. Section 3.2). Many studies such as this one focus on
sophisticated models of adaptation engines leaving the integration into target systems to
some low-level system programming, usually without any systematic approach.

Maggio et al. [Maggio et al., 2011] present and compare different state-of-the-art deci-
sion making approaches. Furthermore, in her PhD work [Maggio, 2011] the use of control
theory principles to drive the design of computing system is discussed.

2.2.2 Approaches Aiming at Generic Self-Adaptation

In this section follows a more detailed overview about some of the approaches we find
the more relevant to our work.

Rainbow One of the first frameworks facilitating the engineering of self-adaptive soft-
ware systems is Rainbow [Garlan et al., 2004]. In its core, it is composed as a two-layer
framework (cf. Figure 2.4) with an external fixed control loop supporting architectural-
based system representation and adaptation strategy. The adaptation process is based
on the use of a customized Acme-based [Garlan et al., 2000] software architectural model
at run-time to monitor and adapt target systems. The notion of architectural style has
been augmented with the notions of operators (to change an architecture) and adaptation
strategies (to group changes for specific purpose). The decision-making part is based on

20

2.2. Related Work

the utility theory that considers multiple factors while being sensitive to the context of
use.

8 Shang-Wen Cheng, David Garlan, Bradley Schmerl

cycles in a particular pipe-filter style, or define a compositional pattern
such as the starfish arrangement of a blackboard system or a compiler’s
pipelined decomposition.

• Properties are attributes of the component and connector types, and
provide analytic, behavioral, or semantic information. For example, load
and service time properties might be characteristic of servers in a
performance-specific client-server style, while transfer-rate might be a
property in a pipe-filter style.

• Analyses can be performed on systems built in an appropriate
architectural style. Examples include performance analysis using
queuing theory in a client-server system, and schedulability analysis for
a real-time-oriented style.

To support the needs of run-time system self-adaptation, we augment the notion of
style with the notions of operators (to change an architecture) and adaptation
strategies (to package changes for specific purpose). In previous work, we have
extensively described the significant leverage that architectural style affords us [3].
That is, style provides opportunity for specific analysis of system behavior and
properties. For self-adaptation, each style may uniquely guide the choice of metrics,
help identify strategic points for system observation, and suggest possible adaptations.

5 The Rainbow Framework

In this section, we briefly introduce the Rainbow framework, which has already been
reported in prior work [3,13]. In this paper, we focus on the separation between the
general parts of Rainbow that can be applied to a wide variety of systems, and the
tailorable parts that need to be written to apply Rainbow to specific systems and
concerns.

Translation
Infrastructure

Arch
Evaluator

Adaptation
Engine

Model
Manager

Adaptation
Executor

Running System

System API

System Layer

ProbesResource
DiscoveryEffectors

Running System

System API

System Layer

ProbesResource
DiscoveryEffectors

Architecture Layer

Gauges

Arch
Evaluator

Adaptation
Engine

Model
Manager

Strategies
& Tactics

Rules

Adaptation
Executor PropertiesOperators

Architecture Layer

Gauges

Arch
Evaluator

Adaptation
Engine

Model
Manager

Strategies
& Tactics

Rules

Adaptation
Executor PropertiesOperators

Figure 2. The two-part Rainbow Framework. Figure 2.4: Rainbow Framework [Garlan et al., 2004]

The self-adaptation cycle in the Rainbow framework is realized using a MAPE-K loop
(cf. Section 2.1.3 on page 13): monitoring is achieved by Probes and Gauges updating
the model; analysis is performed by the Architecture Evaluator assessing problems on the
model; decision occurs through the Adaptation Manager choosing actions based on the
model states; action is accomplished by the Strategy Executor effecting changes on the sys-
tem via Effectors; and knowledge is represented in the architecture model by the Model
Manager.

Next to the core framework, Rainbow also provides a DSL, Stitch, for capturing explicit
adaptation policies. The policies are expressed using the first-class entities adaptation
concepts of an operator to capture a system-provided command, a tactic to describe a sin-
gle adaptation step with cost and benefit impact including a condition statement in form
of a structural invariant, and a strategy which is a packaged pattern of adaptation steps.
Rainbow also comes with an integrated development environment, RAIDE, that enables
editing the Acme architecture models, write Stitch scripts, simulate adaptation behavior,
and deploy the Rainbow runtime [Cheng et al., 2009c].

While the feedback control loop is made explicit, the framework itself has several lim-
itations. It has not been designed to allow runtime adaptation of this loop and the adap-
tation processes are fixed during the system execution. The framework is not explicitly
reflective and therefore it does not support constructing different forms of hierarchically
organized FCLs. The use of utility theory is one of the major underpinning of this ap-
proach and therefore it is hardwired into both the core framework and the DSL.

StarMX Following the IBM autonomic element architecture (cf. Section 2.1.3 on page 13),
StarMX [Asadollahi et al., 2009] is a framework for building external self-adaptive Java-

21

. S-A S S

based systems. It uses JMX technology10 to enable self-adaptive capabilities in the tar-
get system. The JMX mbeans are used to represent the manageability endpoints of the
target system. The decision-making logic is implemented as a set of entities, called pro-
cesses, that form an autonomic manager (cf. Figure 2.5). Each process supports one or
more parts of the MAPE-K control loop decomposition. It allows developers to imple-
ment the decision-making process in plain Java as well as in a higher-level rule based lan-
guage Common Information Model-Simplified Policy Language CIM-SPL [DMTF, 2007] using
Apache Imperius11.

nomic requirements in a separate location. Figure 1 shows
a high-level static view of the StarMX architecture. In gen-
eral, it consists of two main elements: the execution engine
and a set of services, which will be explained in the follow-
ing sections.

Execution Engine

Services

Lookup

Execution Chain

Proc

Execution Chain

.Proc Proc Proc

Proxy
Gen.

Activation
Mech.

Memory
Scope Caching Data

Gather. Logging

Figure 1. High Level Static Architecture

3.1. Enabling Technologies

StarMX incorporates the JMX technology and policy en-
gines to enable self-managing capabilities. While JMX is
part of the Java Development Kit (JDK), it is commonly
used in Java EE environments due to the complexity of dis-
tributed enterprise applications. StarMX activates differ-
ent JMX features for the purpose of self-management and
hides the technical details related to this technology. The
benefits of using JMX include: a) different resources can
be managed through JMX instrumentation interfaces called
MBeans or MXBeans, b) the autonomic managers can re-
motely manage their underlying resources, c) monitors can
be set up to capture and report particular situations, and d)
the notification mechanism enables the activation of auto-
nomic managers under certain circumstances. In StarMX,
all these facilities are provided to the autonomic system de-
veloper through simple configuration. The facilities are then
utilized by the execution engine.

Using policies to declare the required adaptation behav-
ior is a common technique in autonomic systems. As dis-
cussed in Section 2, there are several research projects that
define new policy languages or integrate with external pol-
icy engines. One of the emerging standards in this con-
text is the CIM-Simplified Policy Language (CIM-SPL) [5],
which is a policy language for managing computing re-
sources using CIM constructs. It allows the expression of
condition-action rules for managing policies and provides a
large number of operations for conditions and actions. The
Apache Imperius project [2] has recently provided an im-
plementation of this language with an object-oriented style
for defining SPL policies. However, to support policy-based
approaches in StarMX, the execution engine is equipped

with the capability to collaborate with different policy en-
gines in an abstract manner.

3.2. Execution Engine

The Execution Engine module automates the self-managing
operations. It executes the management logic defined by the
application developer to adapt the system with its current
situation using services provided in the service layer. In
other words, it enables the autonomic managers to perform
their jobs.

The two key components of the execution engine are
Process and Execution Chain. Figure 2 displays the archi-
tecture of this part of the framework and its interaction with
the managed system. Processes are considered the building
blocks of an autonomic manager. Each process may repre-
sent a single function or a group of consecutive functions
of an autonomic manager (MAPE loop entities). The pro-
cesses are chained together to form execution chains. The
connection of processes in an execution chain is based on
the Chain-of-Responsibility design pattern [6]. The exe-
cution chains act as autonomic managers, and each one is
associated with an activation mechanism. When activated,
the processes in the chain are executed sequentially.

Execution Chain (Autonomic Manager)

Process Process Process

Anchor Objects (Sensors, Effectors, Helper objects...)

Managed System

Anchor
Object

Anchor
Object

Anchor
Object

. . .

Activation
Mechanism

. . .

Resource Resource Resource. . .

Figure 2. Execution Chain Architecture

As shown in Figure 2, each process needs a collection of
objects, called Anchor Objects, to perform its task. These
can either be manageability endpoints (sensors and effec-
tors) of the underlying managed resource, or helper ob-
jects that provide some services. The required set of anchor
objects for each process and their lookup information are
defined in the framework configuration file. At execution
time, the anchor objects are prepared and injected into the
process by the execution engine. To support standard forms
of access to the anchor objects, StarMX offers the following
techniques:

60

Figure 2.5: StarMX Framework [Asadollahi et al., 2009]

Each autonomic manager is associated with an activation mechanism that when acti-
vated sequentially executes the processes chain. The two activation methods supported
by StarMX are: timer-based when the execution chain is triggered at fixed time intervals
(e.g., every 10 seconds), and event-based when the execution chain subscribes to receive
a particular event from the managed system or from other sources like the StarMX pro-
cesses. The communication within the framework is performed through a set of services
that are responsible for operations such as locating the declared MBeans, initiating the
activation mechanism, defining the scope of the actions, data sharing among processes,
and obtaining logging information. The framework is using an XML configuration file to
describe the assembly of the JMX MBeans, the processes and the execution chains, and to
define the activation mechanisms.

StarMX is by the choice of technology primarily focused on adapting Java-based sys-
tems, although, there is a possibility to wrap other interfaces into JMX MBeans. The
framework is, however, static. The manageability endpoints and system properties are
defined in a configuration file that are not amenable at runtime (e.g. the timer-based ex-

10http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
11As of May 2011, the work on Apache Imperius has been stopped and the project is retired https://

whimsy.apache.org/board/minutes/Incubator.html. Former project homepage: http://incubator.apache.
org/imperius/

22

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
https://whimsy.apache.org/board/minutes/Incubator.html
https://whimsy.apache.org/board/minutes/Incubator.html
http://incubator.apache.org/imperius/
http://incubator.apache.org/imperius/

2.2. Related Work

ecution period is fixed). Neither does it allow runtime modification of the management
logic nor hierarchical composition of the autonomic managers. Moreover, it is also not
clear what shall happen if, for example, the execution of an adapted process takes longer
than expected (e.g., due to a network delay) and in the mean time the very same process
is fired again.

CAPPUCINO To tame the challenges mobile applications have to face in ubiquitous en-
vironments, CAPPUCINO [Romero et al., 2010] proposes a uniform approach to context-
aware end-to-end adaptation by exploiting the Service Component Architecture (SCA) [OA-
SIS, 2007] technology. The platform is built on the top of the FraSCAti and its lightweight
version FraSCAtiME for mobile clients [Seinturier et al., 2009]. The control loops are im-
plemented as distributed COSMOS [Conan et al., 2007] context policies using SPACES
[Romero et al., 2010] for mediation via RESTful services.

− FraSCAti is an SCA implementation and the underlying execution engine for CAP-
PUCINO. Unlike standard SCA implementations, FraSCAti embeds the FScript en-
gine [David et al., 2009] into SCA component thus providing the platform with re-
configuration capabilities.

− COSMOS is a component framework for collecting and composing context data for
context-aware applications. It uses a hierarchy of context nodes representing a soft-
ware component that encapsulates context information. It is a three-layered framework
consisting of: collectors gathering raw data about the environment, processors filtering
and aggregating raw data coming from context collectors, and adaptation represent-
ing the decision-making process. A context node also defines a set of properties that
specifies its behavior: active / passive (associating thread control), observation / noti-
fication (communication type with respect to the node's hierarchy), and pass-through
/ blocking (propagating or blocking communication).

− SPACES enriches COSMOS with lightweight communication protocols and alternative
resource representations on the top of REpresentational State Transfer (REST) [Fielding,
2000] architecture, provisioning context as a service. The COSMOS context nodes are
published as REST resources and SPACES acts as a mediator being responsible for dis-
seminating the context information among the entities.

Figure 2.6 shows an example of a deployment of the CAPPUCINO distributed runtime
on tree distinct nodes. The autonomic control loop is implemented as an SCA application
adapting mobile clients and application servers as they join the adaptation domain. The
managed applications and clients use SPACES to connect the remotely deployed CAPPU-
CINO elements. The Adaptation Runtime is responsible for executing the autonomic loop.
The collected context information is processed by the Adaption Policy so that the Decision
Engine, and the Reconfiguration Engine components can create corresponding reconfigura-
tion plans. These are then sent to their counterparts located in each distributed location,
completing the loop.

23

. S-A S S
M

idd
lew

are
A

pproach
for

U
biqu

itou
s

E
n
viron

m
en

ts
17

CAPPUCINO
Adaptation Runtime

CAPPUCINO Control Loop

CAPPUCINO
Mobile Runtime

SCA Platform
(FraSCAme)

Context
Policy
(SPACES)

push

CAPPUCINO Client-side Application

pull

Reconfiguration
Engine

(FScript)

push

pull

Deployment
Engine

(DeployWare)

View Controller
pull

CAPPUCINO
Server Runtime

SCA Platform
(FraSCAti)

Context
Policy
(SPACES)

push

CAPPUCINO Server-side Application

Reconfiguration
Engine

(FScript)
push

Model Storage

Adaptation
Situation
(SPACES)

push

pushSCA Runtime
(FraSCAti)

Reconfiguration
Engine

(FScript)

Adaptation
Policy

(SPACES) push pushpush

Decision
Engine

(SPACES)
push

Reconfiguration
Executor
(SPACES) pushpush

push

push

push

Artefact
Repository

push COSMOS asynchronous push

pull COSMOS (a)synchronous pull

Local SCA binding

Remote SCA binding (REST, RPC, etc.)

SCA service

SCA reference

A

SCA component

B

SCA composite

REST

REST

RPC

REST

REST

SCA reconfiguration service

push

push

push

push

push

push

adaptation server

application server

mobile client

push

push push

Figure 2.4: Overview of the CAPPUCINO distributed runtime.

in
ria

-0
04

14
07

0,
 v

er
si

on
 1

 -
7

Se
p

20
09

Figure 2.6: CAPPUCINO Framework [Romero et al., 2010]

CAPPUCINO primarily aims at adapting mobile clients and applications that are based
on the SCA architecture. Since the control loop processes are themselves implemented as
SCA components, they could also be reconfigured using FScript and therefore allowing
hierarchical organization of multiple control loops. There is however no explicit multiple
loop coordination support. Furthermore, SCA components can be executed simultane-
ously multiple times by multiple threads and thus it is upon developers to make sure
that service implementations are thread safe. Finally, architecture descriptions are kept
in SCA composites imposing the use of SCA technologies limiting the target deployments
to the availability of SCA runtime.

DiaSuite Focusing on the Sense/Compute/Control (SCC) applications, DiaSuite [Bertran
et al., 2012] is a tool suite supporting their development using a software design approach.
The tool suite contains a domain-specific design language, a compiler producing a Java
programming framework, a 2D-renderer to simulate an application, and a deployment
framework. While the main focus is on ubiquitous application domains such as telecom-
munications or building automation, it can also be used for other systems such as web
server monitoring (cf. Figure 2.7) [Cassou et al., 2011].

An application in the SCC pattern is decomposed into four layers (cf. Figure 2.7):
sensor, context operator, control operator, and actuator. The behavior of the application is
specified as an information data flow using an oriented graph where nodes represent the
components and edges the data exchanges between them. Each layer contains a different

24

2.2. Related Work





































Figure 1: Architecture of a web server monitor.

Solid arrows represent data flow. Dashed arrows

represent pull requests. For simplicity, the diagram

does not show the types of the values calculated by

the components and the types of the parameters re-

quired by pull requests.

source line of the AccessLogReader sensor. When a new
line is added to the log, AccessLogParser parses the line to
create a higher-level structure including the IP address of
the person accessing the web server, and the requested page.
This information is passed to AccessingProfile, which ex-
tracts the IP address from the structure, and then asks the
IP2Profile context operator to compute a profile. This pro-
file is obtained by querying the NSLookup and the LDAPServer
sensors. Pull requests on IP2Profile and NSLookup are pa-
rameterized by an IP address. Pull requests on LDAPServer
are parameterized by a host name.
Context operators for intrusion detection. The Intrusion-
Detector context operator uses the context calculated by
AccessingProfile, including the information about the most
recent access to the web server and the client profile associ-
ated with this access. IntrusionDetector only propagates
accesses that are suspected to represent intruders.
Control operators and actuators. The monitoring tasks are
implemented by the IntrusionInformer and ProfileLogger
control operators, which respectively invoke the Mailer and
Logger actuators using the send and log actions. To no-
tify the administrator of an intrusion, IntrusionInformer
only needs to be informed by the IntrusionDetector con-
text operator of any new intrusion. To update the pro-
file log, ProfileLogger only needs to be informed by the
AccessingProfile context operator of which profile is ac-
cessing the server.

In this example, we can observe that the architecture de-
scription in Figure 1 is underspecified. While it may be intu-
itively obvious that the IP2Profile context operator reacts
only to parent pull requests, as LDAPServer and NSLookup
never push data by themselves, this information is not explicit
in the architecture description. This underspecification may
lead to di�erent interpretations of the architecture descrip-
tion and incompatible implementations. To address these
issues, we enrich the architecture description by annotating
each context operator with an interaction contract.

2.3 Interaction Contracts
The goal of an interaction contract is to describe the

interactions that are allowed by the context operators of
an SCC application. In a reactive system, the most basic
information is what makes a context operator react, i.e., a

Context operator Associated interaction contract

AccessLogParser È« (line); ÿ; « self Í
AccessingProfile È« (AccessLogParser); » (IP2Profile); « self Í
IP2Profile È» self ; » (ip2host, host2profile); ÿÍ
IntrusionDetector È« (AccessingProfile); ÿ; « self ?Í

Table 1: Interaction contracts associated to the

context operators of the web server architecture.

Line, ip2host and host2profile abbreviate AccessLog-

Reader.line, NSLookup.ip2host and LDAPServer.host2-

profile, respectively.

data pull request from one of its parents or a data push from
its children. In this reaction, a context operator may need
to pull data from its child context operators or child sensor
sources. Finally, a reaction may or may not lead to the push
of a new value. We group the information about these three
kinds of interactions into a basic interaction contract.

Definition 1. A basic interaction contract ÈA; U ; EÍ is a
tuple where A, U and E are named respectively the activation
condition, the data requirements list and the emission. These
elements are defined as follows:

• A = « (A1, . . . , An) | » self , where n > 0, Ai is the
name of a child of the current context operator (a sensor
source or a context operator) or a disjunction of such
names, and self indicates the context operator itself.
« (A1, . . . , An) corresponds to the push of values from
all the children A1, . . . , An. If any Ai is a disjunction
of names, then the information associated with any of
these names can be used. » self corresponds to a pull
request from a parent of the context operator. A pull
request always returns a value to the calling parent.

• U = » (B1, . . . , Bn) where n Ø 0 and Bi is the name of
a child of the current context operator (a sensor source
or a context operator). This information is accessed by
a pull request, and the developer may choose to access
it or not.

• E = « self | « self ? | ÿ indicates respectively whether
the context operator always, sometimes, or never pushes
a new value to all its parents. When A = » self , a value
is always returned to the requesting parent, regardless
of E.

An interaction contract defines how a context operator in-
teracts with its parents and children, and in this sense is
related to interaction descriptions such as automata-based
models [4, 11], as analyzed in Section 6.

Table 1 specifies the interaction contracts for the web
server monitoring architecture. For example, the interac-
tion contract of the IntrusionDetector indicates, via the
notation « self ?, that when IntrusionDetector receives a
new profile from AccessingProfile, it might or might not
push a profile. In practice, IntrusionDetector only pushes
a profile when the profile is suspected to correspond to an
intrusion. In contrast, the emission of the interaction con-
tract associated with IP2Profile is ÿ. When this component
receives a pull request, it returns the data to the parent that
sent the request, but it does not inform the other parents, if
any, by publishing the data.
Synchronization. A sequence « (A1, . . . , An) in the activation
condition of an interaction contract indicates the synchro-
nization of multiple information sources. Suppose that the

in
ria

-0
05

37
78

9,
 v

er
si

on
 2

 -
13

 S
ep

 2
01

1

Figure 2.7: DiaSuite Example [Bertran et al., 2012]

class of components: sensors retrieve information from the environment; context operators
interpret these information and either push data to other context operators and to control
operators, or respond to requests from parent context operators; control operators trans-
late the information coming from the context operators into orders for the actuators; and
finally actuators trigger actions on the environment, finishing the conceptual autonomic
feedback control loop.

DiaSuite enriches the SCC application pattern with a notion of interaction contracts to
describe allowed interactions among the components. An interaction contract specifies
the condition upon which a component is activated, what data requirements it might have
(i.e. what additional data it might need to fetch in order to produce a result) and to what
connected parents will it push computed result. For example, AccessingProfile from
Figure 2.7 has a following interaction contract:

⟨⇑ (AccessLogParser);⇓ (IP2Profile);⇑ self⟩

It indicates that AccessingProfile is triggered by a push request from the AccessLog-
Parser, during its execution it might pull data from IP2Profile and it will always push
the results to all its connected parents, in this case to IntrusionDetector and ProfileL-
ogger operators.

Similarly to StarMX and Rainbow, the model is not explicitly reflective and does not
allow hierarchical control composition neither it allows dynamic reconfiguration of the
running platform.

Ptolemy There is a large body of work that concerns designing feedback control for
embedded computing [Arzen and Cervin, 2005]. One of the prominent examples is the
Ptolemy project [Eker et al., 2003] for modeling, simulation, and design of concurrent, real-
time, embedded systems with a focus on concurrent components assembly. Ptolemy is an
extensive framework for simulation of concurrent actor-oriented systems, with the ability
to combine heterogeneous models of computation that govern the interactions between
the actors. It allows for exploring interactions using models of dataflow and process net-

25

. S-A S S

works, discrete-event systems, synchronous / reactive languages, finite-state machines,
communicating sequential processes, and the like.

Among others, one of the novelty of Ptolemy is that the semantics of a model is not
determined by the framework, but instead it is encapsulated in a software component
(a director), that is added to the model. An actor in the model can contain other actors
thus forming composites with arbitrary nesting (cf. CompositeActor in Figure 2.8). Each
composite specifies its director that controls the execution of the actors within the com-
posite thus allowing the heterogeneity (e.g. Director 1 uses synchronized data flow model
while Director 2 is based on continuous time). The concept of a model computation is re-
ferred to as a domain and directors are associated with domains. Most actors are domain-
polymorphic (agnostic about how their inputs and outputs are received and sent) and
thus usable in multiple domain.

Figure 2.8: Example of a Ptolemy II model

One of the directors included in the current version of Ptolemy is Component Interaction
(CI) [Zhao, 2003]12. It focuses at data-driven and demand-driven styles of computation,
which is a common communication style between software components, also referred
to as Push-Pull communication. The push indicates a message transfer initiated by the
producer while pull represents message transfer that is initiated by the consumer.

Ptolemy provides a state-of-the-art environment for designing and simulating control
system with a particular focus on embedded control. It has been successfully used for
designing complex heterogeneous control systems such as discrete computer based sys-
tems interacting with continuous physical plants. To the best of our knowledge, we are
not aware of the usage of Ptolemy for building self-adaptive software systems. One of
the current limitation is that adding a new actor into Ptolemy is not a straight-forward
process13. Moreover, the use the codegen to synthesize executable systems from a model
definition might not be suitable for the class of software systems we aim at. The codegen
is limited to C and VHDL code with the main focus on embedded systems [Leung et al.,

12The Component Interaction model of computation is experimental and is included only in the full Ptolemy
II: http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII8.0/ptII8.0.1/doc/domains.htm

13http://chess.eecs.berkeley.edu/ptexternal/nightly/doc/coding/addinganactor.htm

26

http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII8.0/ptII8.0.1/doc/domains.htm
http://chess.eecs.berkeley.edu/ptexternal/nightly/doc/coding/addinganactor.htm

2.2. Related Work

2008]. Also, currently only the synchronous dataflow and the heterochronous dataflow14

can be used and it requires to associate each used Ptolemy actor with an adapter class that
defines the C code implementation.

Executable Runtime Megamodels Following the model@run.time approach, Executable
Runtime Megamodels [Vogel and Giese, 2012] provide a domain-specific modeling lan-
guage for specifying and executing external feedback control loops. Megamodels are
essentially models that have other models as their elements and that capture the rela-
tionships between the models by using model operations such as model transformations
[Bézivin et al., 2005]. The executable runtime megamodels are using models to represent
the target system and model operations for capturing the adaptation steps. The provided
modeling language resembles a flowchart and data flow diagram (cf. Figure 2.9). The
model operations are usually implemented using some model-driven engineering tech-
niques such as model validation or transformation. For example a model operation can
be an OCL invariant checking some structural constraint of the model representing the
target system. The target runtime system is synchronized using triple graph grammar
rules with an architectural model that is then used as the base for modeling the feedback
control processes. The different models used within megamodels are stereotyped in or-
der to differentiate the feedback loop concepts following the MAPE-K decomposition (cf.
Section 2.1.3 on page 13). At runtime, these models are executed by an interpreter that
follows the specified control flow and invokes the model operations.

























 





 
 













































130

Figure 2.9: Executable Runtime Megamodels Example [Vogel and Giese, 2012]

Besides being able to express the adaptation concerns explicitly using a high level of
abstraction, executable runtime megamodels provide support for multiple loop coordi-
nation with explicit synchronization. Since the models are reflective, they also support
hierarchical organization of multiple loops operating on different time scales. The loops
can be organized into layers where each layer is responsible for managing an adjacent
layer below and the bottom most layer is the target system. The reflection capability al-
lows for example to change the model operations or the control flow.

14http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII8.1/ptII8.0.1/doc/domains.htm#hdf

27

http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII8.1/ptII8.0.1/doc/domains.htm#hdf

. S-A S S

While the megamodels are accompanied with a runtime interpreter there is only a
high-level overview of how the actual adaptations look like. Details about models data
and control flow synchronizations, operations scheduling and timeliness are not pro-
vided. Furthermore, there might be some performance limitations of the approach since
the megamodels are based on EMF that was primarily developed to be used at design-
time. It has therefore some shortcomings for the use at runtime such as higher memory
footprint and lack of thread safe access to the model elements [Fouquet et al., 2012b]. Sim-
ilarly, many of the techniques for EMF model manipulation primarily focus on design
time.

2.3 Summary

In this chapter we have presented the context of self-adaptive software systems and made
an overview of some of the representative approaches that facilitate their engineering.
While the given selection is not exhaustive, it shows the diversity of approaches and dif-
ferent perspectives including conceptual and implementation-specific methods for tack-
ling the engineering issues. In addition, we observe that despite this diversity there is no
agreed-upon solution that would be preferred over the others. In many cases, the pro-
posed approaches are designed for a particular problem, pointing out a problem-specific
solution (e.g., using a specific control algorithm or enabling adaptation for a particular
system platform). Usually these solutions are tightly coupled with specific domains or
technologies or depend on a particular execution environment, thus limiting their appli-
cability with respect to the problem being addressed [Ramirez and Cheng, 2010]. Further-
more, while there have been lot of advances in mechanisms to enable self-adaptation, not
much effort has been put into providing a systematic approach facilitating the integration
of these mechanisms from an end-to-end system perspective. Consequently, different sys-
tem parts are expressed at different levels of abstraction. This results in reduced visibility
of the control mechanisms making it difficult to reason about them and to trace the higher
level adaptation concepts from the low level implementation code. This limitation affects
their reusability and flexibility making them difficult to apply in practice. Consequently,
this gives raise to accidental complexities that contribute to increased cost of engineering
and maintaining these systems.

This issue has been already identified and acknowledged [Cheng et al., 2009a, Brun
et al., 2009, Salehie and Tahvildari, 2009]. According to us it is well summarized by Simon
Patarin and Mesaac Makpangou in their System-Level Support [Babaoglu et al., 2005] in
which they argue that it is a good system-level support that is missing for engineering self-
adaptive software systems: ``One that would present the right abstractions to the developers,
which would allow them to prototype autonomic applications rapidly. One that would be flexible
enough to cope with the diversity and the heterogeneity of current platforms. One that would
be efficient in terms of performance, because you simply cannot pretend maintaining any sort of
quality of service if the service you propose is of poor quality right from the beginning. And one
that would keep simple applications easy to implement. It is our belief that such a basis would allow

28

2.3. Summary

researchers with different motivations and experiences to put their ideas in practice, free from the
painful details of low-level system implementation.''

Therefore we argue that there is still a need for an integrated approach for develop-
ing self-adaptive software systems. An approach that would provide a flexible feedback
control loop abstraction with good system-level support allowing to integrate variety of
self-adaptation mechanisms into a wide range of software systems.

In the next chapter, we will revisit some of the associated challenges and introduce
our model-driven engineering approach for developing and integrating self-adaptive soft-
ware systems.

29

CHAPTER 3
Modeling Feedback Control

Architectures - Syntax

In the previous chapter we have presented an overview of the landscape of self-adaptive
software systems. The remaining chapters of the first part of this work present our model-
driven engineering approach that facilitates integration of self-adaptive mechanisms into
software systems. In this chapter we introduce our approach and present a domain-
specific model language for defining amenable feedback control architectures for external
self-adaptive software systems based on feedback control loops.

We start with a discussion of the main design decisions. Next, we introduce a running
example that will be used throughout the rest of this work to illustrate our approach on
a concrete self-adaptation scenario. The rest of the chapter presents the main concepts of
the language.

The language syntax is followed by a description of its semantics (Chapter 4) and an
overview of a modeling environment and tools (Chapter 5) that facilitates the usage of the
language.

3.1 Design Decisions

The issues of self-adaptive software engineering can be split into concerns related to (1) de-
signing the underlying adaptable software system, (2) designing the adaptation engine,
and (3) forming the architecture connecting them together. At the end of the last chapter
(cf. Section 2.3), we have discussed the lack of support for the last one making the case
for the need to provide a more integrated approach. In this work we focus on this issues,
i.e., on integrating the self-adaptive mechanisms into software systems by using feedback
control loops.

In this section we revisit some of the challenges related to our integration objective
and elaborate the main design decisions and principles followed in this work.

31

. M F C A - S

3.1.1 Challenges Revisited

Extracting from challenges identified in previous studies, in particular by Brun et al. [Brun
et al., 2009] and Selehie and Tahvildari [Salehie and Tahvildari, 2009], we identify the
following challenges for our work:

− Generality. Make the solution both domain-agnostic and technology-agnostic [Cheng, 2008,
Salehie and Tahvildari, 2009]. Domain-agnostic so it is applicable to a wide range of
software systems and adaptation properties. Technology-agnostic so it does not im-
pose any particular technical solution for the target system nor for any of the feedback
control loop processes.

− Visibility. Make feedback control loops, their processes and interactions explicit at de-
sign time and at runtime enabling coordination of multiple control loops using differ-
ent control schemes [Müller et al., 2008, Brun et al., 2009]. This should increase the
overall understanding of the self-adaptive capabilities and ensure a strong mapping
between design and runtime control concepts.

− Tooling. Provide tool support that would aid developers in engineering of these sys-
tems and allow them to automate some recurring development tasks involving design,
implementation and analysis of FCL [Brun et al., 2009, Salehie and Tahvildari, 2009].
There should be a support for traceability from the control design to the runtime im-
plementation and some validation and verification techniques to assist in evaluating
the correctness and maintenance of the control system.

− Remote distribution. Software systems are becoming increasingly networked and as a
result, feedback control might involve remote, potentially geographically distributed
applications. In other cases, because of practical or technological issues, it is either not
desired or not possible to run the complete adaptation engine next to the target system
and only remote touchpoints are available. Therefore, it is necessary that the approach
supports remote distribution of feedback control processes without requiring lot of
engineering effort.

Furthermore, the approach should follow good software engineering practices and al-
low modular specification of the self-adaptive behavior with the possibility to compose
and reuse already implemented parts of the feedback control across multiple scenarios.
Finally, in order to improve productivity and reduce the cost of engineering and evolving
self-adaptive software systems, the approach should remain lightweight. It should facili-
tate engineering of such systems without requiring a lot of development effort making it
easy to use without raising accidental complexities. A particular emphasis should be put
on making the process automated where possible.

One way to address these challenges is to raise the level of abstraction at which these
systems are being described. This will make it possible to reify feedback control loops as
first class entities, improving the ability for reasoning on control mechanisms, make them
amenable for analysis and synthesis of its implementation. In the rest of this section, we

32

3.1. Design Decisions

will motivate the use of Model-Driven Engineering (MDE) techniques as a viable solution
to meet the identified challenges and requirements.

3.1.2 Why a Model-Driven Engineering Approach?

At a very high level, a software development process can be seen as a function mapping
between a problem space represented by domain-specific1 abstractions and a solution space
that consists of implementation-oriented abstractions [Czarnecki, 2005]. In the traditional
development, this mapping is done manually through the process of programming. A de-
veloper takes requirements usually defined by a natural language using the abstractions
from the problem space and maps them to the implementation abstraction offered by
some General Purpose Programming Language (GPL). One of the problem with this process
is the misalignment between the abstractions, i.e., between the problems being addressed
and their actual software implementations [Schmidt, 2006]. The conceptual gap between
the problem and solution domains gives raise to the accidental complexities making the
development difficult and costly [France and Rumpe, 2007]. In order to improve pro-
ductivity (not just the speed, but also the quality), software engineers seek ways to raise
abstractions used in the solution space [Kelly and Tolvanen, 2008].

Frameworks A software framework provide abstractions with extensible and reusable
building block for some of the common and recurring problems of an application con-
struction in a particular application domain [Johnson and Foote, 1988]. It gives an archi-
tectural basis for an application, defining its overall structure and taking responsibility
over its control [Gamma et al., 1994]. In the Section 2.2 of related work, we have discussed
a number of studies that base there solution on some sort of a framework.

The main advantage of a framework is that it can simplify development. It uses the
principle of inversion of control [Gamma et al., 1994], where the user code gets called by
the framework, allowing developers to concentrate on the specificities of their problems
with the application domain and thereby enabling them to build the applications more
rapidly.

On the other hand, frameworks operate within boundaries of some programming lan-
guage (usually a GPL). Therefore they are limited in the level of abstraction they can pro-
vide. The possibility of a formal reasoning and verification is rather limited since the
structure and behavior is an integral part of the implementation. Their implementation
always imposes the use of certain technologies that might not be suitable for certain prob-
lems. Moreover, some creativity freedom is lost since many design decisions have been
already made by the framework designers [Gamma et al., 1994].

Models A different approach is followed in the area of model-driven engineering, where
the software development artifacts are models representing abstractions of some aspects
of a system [France and Rumpe, 2007]. When these models are created using the problem

1A domain in this context represents ``an area of interest to a particular development effort.'' [Kelly and Tolvanen,
2008]

33

. M F C A - S

domain concepts, we talk about Domain-Specific Modeling (DSM). One of the advantages
of using DSM is that it can significantly raise the level of abstraction as it can specify
solutions directly using problem-level abstractions [Kelly and Tolvanen, 2008]. The solu-
tion, i.e., system structure and behavior, is therefore separated from its implementation
as it is captured at a conceptual level using the problem domain concepts, rather than
the implementation concepts. Domain-specific models are usually described in Domain-
Specific Modeling Languages (DSML), often specified using meta-models. A DSML defines
a structure, a behavior and relationships among the problem domain concepts including
their semantics and associated constraints [Schmidt, 2006]. Next to DSML, DSM includes
a domain-specific code generator that uses the models to synthesize concrete software im-
plementations of running systems. The code generator is usually coupled with a domain
framework that provides a well defined set of services for the generated code to interface
with [Tolvanen and Kelly, 2005].

This concept of software development is often referred to as Model-Driven Software
Development (MDSD), a MDE branch that is concerned with generating code from models.
It is important to realize that automation of the software synthesis is possible because both
the language and the generator operates only within a certain, usually limited, domain (as
opposed to general purpose models and languages). Also, while MDSD uses a framework,
its use is separated from the solution as opposed to the case when the framework with
the user code is the only representation of the solution. The code generator is an example
of a broader concept called model transformation, a process whereby one or more source
models are transformed into one or more target models, usually of a different purpose
(model-to-model transformation) or to text (model-to-text transformation).

A note on UML Unified Modeling Language (UML) [Object Management Group, 2011]
is a general purpose modeling language that can be used for expressing wide range of
systems and domains. However, we find two problems in using UML in our approach:
(1) the size and complexity of UML and UML profiles, and (2) the generality that makes
it more specific about implementation choices and thus limits the abstraction that can be
expressed. While the use of UML profiles can make UML more domain-specific, still it
cannot hide the underlying complexity of the UML models [France et al., 2006]. For exam-
ple, the closes standard profile to our domain is the SysML profile [Object Management
Group, 2012c], which aims at providing general-purpose modeling for system engineer-
ing, contains nine diagrams with dozens of modeling elements. Moreover, profiles like
SysML define structure of these systems, but do not contain any information about the
model of computation and thus the same SysML diagrams could represent different de-
signs [Lee, 2010]. Therefore, we believe2, that in our case, the meta-modeling approach of
DSM is more desirable.

2There is an outgoing discussion about the advantages and disadvantages between the DSM and UML
within the modeling community. Interestingly, however, the panel discussion held at MODELS 2012 confer-
ence titled Unified vs. domain-specific: should we have fewer or more modeling languages? resulted in 80% of the
participants voting towards more languages [Tolvanen, 2012].

34

3.1. Design Decisions

3.1.3 Why an Actor-Oriented Design?

The use of model-driven software development involves development of a domain-specific
modeling language and transformation tools such as a domain-specific code generator
and a domain framework3 [Kelly and Tolvanen, 2008]. The modeling language should
map directly to the problem-level abstractions while the generated code has to map to the
target environment. The abstraction barriers4 that has to be implemented for the domain-
specific modeling are therefore at two different levels [Kelly and Pohjonen, 2009]: (1) at
the DSML level, between the models and the generated code, and (2) at the domain frame-
work level, between the generated code and the target libraries and platform. There is a
close relationship between these levels and therefore there is always a trade-off between
them and in general between the language domain-specificity and versatility. The more
specific the models are, the less variability they cover resulting in more commonalities in
the system. This requires more effort in building the domain framework, the code gen-
erator or both. On the other hand the less specific and more versatile models are harder
to design and evolve, but less work is put into the synthesis of the implementation as
the modeling concepts map more naturally to the concepts of the target programming
language.

Modeling Feedback Control Loops One of the main problems in modeling control sys-
tems is how to decompose them into more manageable and domain-specific subsystems
to effectively divide and conquer the problem [Liu et al., 2004]. In Sections 2.1.1 we have
shown a general feedback control loop decomposition into conceptual processes such as
monitoring, decision-making and reconfiguration (cf. Section 2.1.2) or MAPE-K (cf. Sec-
tion 2.1.3). Essentially, a feedback can be seen as a sequence of interconnected processes
that have inputs, outputs and encapsulate some state and some behavior. For example, the
block diagram (cf. Figure 2.1) used in control theory represents these processes as system
blocks representing functions that transforms the signals floating between them. Such
a decomposition naturally maps into many object-oriented software component models.
Indeed, many of the framework-based approaches that we have shown in the literature
overview (cf. Sections 2.2.1 and 2.2.2) are using some sort of components to build self-
adaptation, for example [Garlan et al., 2004, Asadollahi et al., 2009, Romero et al., 2010,
Chen and Kotz, 2002]. There is a trade-off in using a component model as a base for a
DSML. While it simplifies its development by reusing existing component model con-
cepts and implementation for domain frameworks, in turn it might lower the available
abstraction level.

Components A software component is generally defined as an element encapsulating a
set of related data and operations through some well-defined contractual interface [Szyper-

3The domain framework is optional and the code generator can output code without the need of a frame-
work. This is usually done in the case where the code does not require any framework or when the target
language has limited structuring facilities. The two different code generation are sometimes referred to as model-
aware and model-ignorant generation [Fowler, 2010]

4The very same concept has been introduced in SICP book by Abelson and Sussman [Abelson et al., 1996,
Section 2.1.2]

35

. M F C A - S

ski, 2002]. It is also the main unit of composition and multiple related components can
be composed together in order to form higher-level structures, enabling systematic ap-
proach to system construction. In our case, components should represent the fine-grained
processes of feedback control. Component models allows to use the divide-and-conquer
pattern and split the feedback control processes into a tree. Each conceptual process can
therefore be decomposed into smaller units until it becomes small enough to be handled
directly in one piece, i.e., inside a component. The resulting process is therefore not only
clearly structured, but also easier to reason about and simpler to implement. Such a de-
composition should also foster reusability as there is a higher chance for a small compo-
nent (e.g. dedicated sensors) to be usable across different adaptation scenarios. Further-
more, component models provide strong mapping between architectural concepts and
implementation concepts which is one of our requirements.

There are different component-based designs such as object-orientation or middleware-
orientation [Szyperski, 2002]. The object-oriented design is based on object and class ab-
stractions with interfaces defining how the objects can be interacted with. The middleware-
oriented designs emphasize the encapsulation of multiple objects into conceptual ser-
vices. The notion of a service is especially powerful in the distributed systems since it
provides a higher-level abstraction with better non-functional property handling over reg-
ular Remote Procedure Calls (RPC) in general object-oriented frameworks. However, both
designs are based on objects that are related to each other by references and their main
interaction is done through method calls that directly transfer the flow of control from
one object to another [Liu et al., 2004]. Consequently, some important characteristics of
the system behavior such as concurrency and communication remains hidden behind the
method interfaces.

Concurrency Feedback is by definition a reactive process (cf. Section 2.1.1 on page 8) that
activates upon some stimulus sensed in the system. Even a single loop feedback control
may employ multiple sensors that react upon different changes in the environment and
therefore making the system inherently concurrent. Moreover, as we discussed at the be-
ginning of this chapter, self-adaptive systems might likely involve remote communication
which usually also involves concurrency. However, concurrent programming is known to
be difficult [Sutter and Larus, 2005]. In most of the mainstream programming languages
used for building component-based systems, the usual support for concurrency is based
on threads. The main problem with threads is that they are widely nondeterministic, and
despite numerous toolkits helping to effectively prune this nondeterminism, concurrent
programs remain difficult to develop and to reason about [Lee, 2006]. This is not satisfi-
able as it will be left to developers to deal with concurrency and we want to simplify the
implementation effort.

The Actor Model Another component-based design is the actor-oriented design that
provides an alternative to the traditional approach to concurrency using shared memory
with locks. The actor model extends the concept of objects to concurrent computation

36

3.1. Design Decisions

based on actors. It has originated to describe a concept of autonomous reasoning agents
by Carl Hewitt in 1970's [Hewitt, 1977] and was further evolved into a formal model for
concurrent computation by Agha and others [Agha, 1990]. Like objects, actors also encap-
sulate their state and behavior. However, while objects primarily interact by transferring
control through method calls, actors interact strictly by exchanging messages [Lee, 2003].
Messages are sent asynchronously and each actor maintains a queue of received messages
(a mailbox) and processes them one-by-one.

Actors act independently of one another. In its core an actor is a simple entity that
can only receive, process and send messages. The actor state is implemented using the
``share nothing'' policy. It is stored within the actor itself, never being globally accessible.
An actor can only manipulate its own state and never directly accesses the state of other
actors, however, it can send a message that in turn may change the state of its recipient. In
response to a received message it can: (1) send a finite number of messages to other actors,
(2) create a finite number of new actors, and (3) designate the behavior to be used for the
next message it receives. The actor model is inherently reactive and each actor waits for
messages in order to do its work.

Following is a summary of the most relevant features of the actor model in our context:

1. Thread safety. One of our aims is to simplify the development of feedback control
loops. The actor model guarantee that actor message processing is always executed
by one thread at a time. This allows one to implement code without worrying about
thread safety5 which greatly simplifies code [Lee, 2006]. This is a notable advantage
over the standard shared memory concurrency. Accessing an actor's mailbox is by
design race condition free and therefore potentially more secure than shared-memory
concurrency with locks. It is important to note, however, that actors are not deadlock
free (two or more actors are waiting on each other to progress) neither the actor
design eliminates starvation (one or more actor cannot make a progress because of
the inability to access a certain resource) or livelocks (like deadlock, but instead of
being frozen in a state of waiting for others to progress, the actors continuously
change their state).

2. Scalability. In general, the actor model has a lower context-switching overhead over
the standard shared-memory threads with locks [Haller and Odersky, 2009].

3. Distribution. The message-based concurrency with encapsulated state can be seen as
a higher-level model for threads. It can be generalized to distributed computation
without the necessary cost of creating the illusion of shared memory [Haller and
Odersky, 2009].

4. Dynamic Nature. Actor based system are dynamic in their nature and they can evolve
at runtime. An actor can dynamically create any number of new actors, its behavior
may change over time and it is free to send messages to any acquaintances.

5Provided that the passing messages are immutable.

37

. M F C A - S

5. Programming support. Today, there exists several high-performing actor libraries for
mainstream programming languages6. Constructing our approach on the grounds
of an actor model with clearly specified rules about the communication rules and
guarantees makes it possible to target multiple implementations in variety of pro-
gramming environments.

The actor-oriented design has been successfully used in many system-design plat-
forms and development environments [Liu et al., 2004]. For example Mathworks's Simulink7,
National Instruments's LabVIEW8, Synopsys's System Studio9 or the already mentioned
Ptolemy project (cf. Section 2.2.2 on page 25).

3.2 Running Example

Throughout the rest of this work we will use the following adaptation scenario to better il-
lustrate our approach. It is based on the work of Abdelzaher et al. [Abdelzaher and Bhatti,
1999, Abdelzaher et al., 2002] on QoS management control of web servers by content de-
livery adaptation. The reason for choosing this particular work is that (1) it provides a
control theory-based solution to a well-known and well-scoped problem, and (2) it pro-
vides enough details for its re-engineering. The authors also regard more complex issues
such as performance isolation and service differentiation. For the simplicity, in this exam-
ple, we only consider the case with a single server and with all requests having the same
priority.

The aim of the adaptation is to maintain the server load at a certain pre-set value
preventing both under utilization and overload. The content of the web server is pre-
processed and stored in M content trees where each one offers the same content but
of a different quality and size (e.g. different image quality). For example let us take
two tress /full_content and /degraded_content. At runtime, a given URL request, e.g.
photo.jpg, is served from either /full_content/photo.jpg or /degraded_content/photo.jpg
depending on the current load of the server. Since the resource utilization is proportional
to the size of the content delivered, offering the content from the degraded tree helps
reducing the server load when the server is under heavy load.

Utilization
Controller

Load
Monitor

Content
Adaptor

Apache
Web

Server

Requests

Responses
Modified
Requests

Observed Utilization

Target
Utilization

Figure 3.1: Block diagram of the running example [Abdelzaher and Bhatti, 1999]

6http://en.wikipedia.org/wiki/Actor_model#Actor_libraries_and_frameworks
7http://www.mathworks.com/products/simulink/
8http://www.ni.com/labview
9http://www.synopsys.com/Systems/BlockDesign/Pages/default.aspx

38

http://en.wikipedia.org/wiki/Actor_model#Actor_libraries_and_frameworks
http://www.mathworks.com/products/simulink/
http://www.ni.com/labview
http://www.synopsys.com/Systems/BlockDesign/Pages/default.aspx

3.2. Running Example

Figure 3.1 shows the block diagram of the proposed control. The Load Monitor is re-
sponsible for quantifying server utilization U . It does that by periodically measuring re-
quest rate R and delivered bandwidth W . These measurements are then translated into
a single value, U . The Utilization Controller is a proportional integral (PI) controller, which
based on the difference between the target utilization U∗ (set by a system administrator)
and the observed utilization U , computes an abstract parameter G representing the sever-
ity of the adaptation action. This value is used by the Content Adaptor to choose which
content tree should be used for the URL rewriting. The achieved degradation spectrum
is shown in Figure 3.2. It ranges from G = M , servicing all requests using the highest
quality content tree to G = 0 in which case all requests are rejected.

...

serve from
tree #2

serve from
tree #1

Rejection
Level

Minimum Content Full Content

Figure 3.2: Degradation rate for content tree selection [Abdelzaher and Bhatti, 1999]

A service time of a request constitutes of a fixed overhead and a data-size dependent
overhead. Therefore, using some algebraic manipulations, the utilization from the request
rate and delivered bandwidth is derived as

U = aR+ bW = a
r

t
+ b

w

t
(3.1)

where a and b are some platform constants derived by server profiling, r is the number of
request and w is the amount of bytes sent over some period of time t. The authors propose
a simple way to profile a web server by subjecting it to an increase request rate and estimate
its maximum processing capacity, for which the error rate is less than 0.1%. With different
URL sizes, each profiling yields a pair of Rmax,Wmax being respectively the maximum
achievable request rate and the corresponding bandwidth. These numbers represents the
state of a fully utilized server U = 100% and therefore using linear regression the a, b

parameters can be derived as 100 = aRmax + bWmax.
The abstract parameter G is computed as

G = G+ kE = G+ k(U∗ − U) (3.2)

Shall G < 0 then G = 0 and similarly shall G > M then G = M . If the server is over-
loaded (U > U∗) than the negative error will result in decrease of G which in turn might
change the content tree decreasing the server utilization and vice versa. The k is a tuning
parameter of the PI controller that has to be determine a priori usually by using some of
the analytic techniques for the best convergence [Kaczorek, 1993].

39

. M F C A - S

While the presented solution is technologically agnostic, in the rest of the work we will
consider Apache Web Server10, which is today the most deployed web server [Netcraft,
2013].

3.3 Feedback Control Definition Language

In this work we propose a domain-specific modeling language for developing self-adaptive
software systems called Feedback Control Definition Language (FCDL). The purpose of this
language is to allow researchers and engineers to expressively and concisely define amenable
feedback control architectures for external self-adaptive software systems using feedback
control loops. The architecture is defined as a set of higher-level structural elements repre-
senting the feedback processes and the relations between them. In this section we present
the FCDL meta-model that defines the abstract syntax of our modeling language. The
abstract syntax will be accompanied with the semantics definitions in the next chapter.

We start with a high-level overview of our DSML approach using the running example
introduced in the previous section. The rest of the subsections detail the FCDL concepts
and its meta-model.

3.3.1 High-Level Overview

FCDL is a reactive actor-oriented component model representing abstractions of feedback
control loop architectures. The components in FCDL are actor-like11 entities called Adap-
tive Elements (AE). An architecture is created by assembling and connecting the adaptive
elements into hierarchically composed networks that form closed loop feedback control
system.

Adaptive Element Like actors, adaptive elements have a well-defined interface that ab-
stracts their internal state and behavior and restricts how they interact with their envi-
ronments. The interface defines input and output ports that are the points of commu-
nications. Connecting an output port to some input port creates a communication link
through which elements can exchange messages. Once an adaptive element receives a
message, it activates and executes its associated behavior. The execution can be regarded
as function input × state → output. The result of the function computation may or may
not be sent further to the connected downstream elements that would in turn cause them
to active and so forth. Next to ports, adaptive elements can also define properties that are
configuration options of the element's operation.

In general an adaptive element can define any number of ports and the model does
not place any restriction on its behavior. However, each adaptive element represents a
process of a feedback control loop, which may either be: a sensor, a processor, a controller or a
effector. Sensors are the data sources in the system having only output ports. Analogically,
effectors are the data sinks having only input ports. They both represent the target system

10http://httpd.apache.org/
11The are domain-specific actors providing a higher-level interface than the one of base actors.

40

http://httpd.apache.org/

3.3. Feedback Control Definition Language

touchpoints and they are effectively the only points of interaction with the underlying
target system. Processors and controllers on the other hand have both inputs and outputs
processing data along the data flow path from sensors to effectors. Similarly to other
component models, FCDL also allows to construct composite components from both basic
adaptive elements and from other composite components. A composite in FCDL is the
primary unit of deployment. They define both the instances of other components they
contain and the connection between the instances ports (cf. Section 3.3.4).

Feedback Control Loop A feedback control loop is realized by connecting adaptive el-
ements ports together into a network. According to elements roles, this network can be
partitioned into two layers:

− the system layer that consists of sensors and effectors, i.e. the target systems touchpoints,
providing all the necessary inputs and outputs for the adjacent

− control layer that uses the sensors data (inputs) to infer the state of the target system,
reasons about it and computes the required adjustments that will be put into effect by
the system layer effectors (outputs).

The sensors and effectors from the system layer are realized using management inter-
faces provided by the target system. Essentially, they shall be implemented as thin wrap-
pers over these interfaces, operating at the same level of abstraction. For example, they
can wrap a system command (e.g. kill command terminating a system process), a JMX
MBean (e.g. the MemoryMXBean12 for getting information about the memory system of the
Java virtual machine) or a log file. While it might seem to be too low-level [Vogel and
Giese, 2010], there are two reasons for this choice. First, they should not try to reduce or
hide complexity of the underlying system, by building any higher abstraction over the one
that is provided by the operational interface. It is the responsibility of the processors from
the control layer to infer higher-level information from the low-level sensor data and ana-
logically for the reconfiguration part. Second, being thin wrappers simplifies reasoning
about their functionality and increases their chances of being reused.

Next, we illustrate our approach by implementing the complete running example (cf.
Section 3.2) in FCDL.

Illustration Figure 3.3 shows the FCDL model of the running example. The architec-
ture is derived from the block diagram presented in Figure 3.1. Circles represent adaptive
elements with the inner glyph indicating the element role. Arrows denote the communi-
cation links over which data are transported using either push or pull style (indicated by
the direction of the arrow).

− The decision-making part of the control loop represents the adaptation engine. It has
been elaborated in Section 3.2 and our aim is to integrated it into the self-adaptive
software system that we implement. Based on a PI controller (Utilization Controller
12http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/management/MemoryMXBean.html

41

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/management/MemoryMXBean.html

. M F C A - S

ApacheQOS

utilController
: UtilizationController

in input

requestCounter
: Accumulator

responseSizeCounter
: Accumulator

scheduler
: PeriodTrigger

loadMonitor
: LoadMonitor

in input

out sum out sum

in requests in size

out utilization

in input

out output

in utilization

out contentTree

out requests

out size

sy
st

em

la
ye

r
co

nt
ro

l
la

ye
r

active processor

pull connection

input port

port name
port type

composite name

initialPeriod=10s

property

extra infromation

The emphasized
text like this is a
documentation.

output port

adaptor
: ContentAdaptor

ou
t

si
ze

in contentTree

out size

ou
t

re
qu

es
ts

out requests in contentTree

port promotion

in contentTree

ApacheWebServer

server
: ApacheWebServer

push connection

element name

element type

accessLog
: FileTailer

accessLogParser
: AccessLogParser

in lines

out lines

file=/var/log/apache2/access.log

active sensor

processor

controller

effector composite

Figure 3.3: FCDL schema of the running example

from the block diagram) it maps the current system utilization characteristicsU into the
abstract parameter G controlling which content tree should be used by the web server.
In FCDL it is represented by the UtilizationController controller that has one push
input port, utilization, for U and one push output port, contentTree, for G. Once
a new utilization value is pushed to its input port, it computes G using equation (3.2)
and pushes the result to the output port.

− The monitoring part is therefore responsible for providing the controller with the system
utilization metric U . The utilization depends on request rate and bandwidth (3.1). In
the case of Apache web server, both information pieces can be obtained from its access
log. By default Apache logs all requests it processes into a text file with one line per
processed request including the size of response in bytes13. To get this information
from the log file, we need to first create an active sensor, FileTailer, that activates ev-

13http://httpd.apache.org/docs/2.0/mod/mod_log_config.html#logformat

42

http://httpd.apache.org/docs/2.0/mod/mod_log_config.html#logformat

3.3. Feedback Control Definition Language

ery time a content of a file changes14 and sends the new lines over its push output port.
This output port is connected to AccessLogParser that once activated parses the in-
coming lines and computes the number of requests rj and the size of the corresponding
responses wi. It pushes these two values to the appropriate requests and size ports.
Consequently this increments the values of two connected counters requestCounter
and responseSizeCounter. These accumulators are simple passive processors. When
they receive data on their input port, they simply update their state, i.e., add the re-
ceived value to the sum of all values received so far.

At this point we have the accumulated information about the total number of requests∑
j rj and the size of responses sent out

∑
i wi from the time the feedback control sys-

tem has been launched. In order to compute U , we need to convert these values to re-
quest rate R and bandwidth W , i.e., the number of request and sent bytes over certain
period of time t. One way of doing this is by adding a scheduler that would periodically
trigger the computation of U . We therefore create a new active processor, Periodic-
Trigger, that every t milliseconds (initially set by the initialPeriod property) pulls
data from its pull input port and in turn pushes the received data to its output port.
Essentially, it acts as a mediator between two connected adaptive elements controlling
the timing of data requests and distribution. In this scenario, it is responsible for the
timing of feedback control loop execution. By pulling data from its input port, it will
activate the LoadMonitor processor that will in turn do the following: (1) fetch the cor-
responding sums of requests

∑
j rj and response sizes

∑
i wi using the two pull input

ports; (2) convert them to requests rate R and bandwidth W ; and (3) finally compute
the current system utilization U using equation (3.1). The resulting utilization is then
forwarded by the scheduler into the UtilizationController.

− The reconfiguration part of the loop is represented by the ContentAdaptor. When it re-
ceives the extent of adaptation G into its push input port contentTree, it reconfigures
the web server URL rewrite rules so to use the newly computed content tree. One way
of implementing the dynamic URL rewriting is to use a Common Gateway Interface (CGI)
script to handle all the traffic. The content tree reconfiguration is then simply a matter
of notifying the script that the content tree has changed (e.g. using a text file).

On the Implementation Variability It is important to note that there exists other ways
to model the architecture of the running example and to implement the interaction with
the Apache web server. The above model and implementation is just one possibility. It
has been chosen because (1) it is simple, (2) close to the original implementation [see Ab-
delzaher and Bhatti, 1999, sec. 4] and (3) convenient for illustrating some of the FCDL
features in the coming section. For example, the LoadMonitor could also be an active pro-
cessor with an internal scheduler, but decomposing the functionality into two elements
makes a clear separation of concerns and increase reuse. The PeriodicTrigger provides
a generic scheduling facility that can be used across different adaptation scenarios based

14Similar to the unix ``tail -f'' functionality http://en.wikipedia.org/wiki/Tail_(Unix)#File_
monitoring.

43

http://en.wikipedia.org/wiki/Tail_(Unix)#File_monitoring
http://en.wikipedia.org/wiki/Tail_(Unix)#File_monitoring

. M F C A - S

on periodic observation. Similarly, by splitting the access log file observation and parsing
into two adaptive elements, we make the FileTailer a general component that can also
be reused across multiple adaptation use-cases.

Later, in Section 4.1.4, we will show why the proposed solution might be the preferred
one. Nevertheless, one of the aim of the architecture model is to allow to experiment with
different designs leveraging from the fine-grained reusable adaptive elements.

To demonstrate composition, the presented elements are assembled into two compos-
ites ApacheQOS and ApacheWebServer, representing respectively the control part and the
target system touchpoints. Throughout the following text this assembly will be further
refined into a more fine-grained and simpler organization.

Graphical Notation and Meta-Model Presentation The concepts of adaptive elements,
ports, properties and communication links describe the abstract syntax of the model. An
abstract syntax can have multiple concrete representation. In this chapter we use an infor-
mal graphical notation to visualize the feedback processes and the data flowing among
them, much like block diagrams (cf. Section 2.1.1). The complete notation is shown in
Appendix A. Its purpose is to provide an intuitive and expressive visual representation
of the model that can be easily sketched by hand. A formal FCDL textual representation
is given in Section 5.1.2.

In the following text we present excerpts of the FCDL meta-model as UML class and
object diagrams. The full meta-model class digram is included in the Appendix A.2
and A.3. A gray color is used for the elements that have been already presented before or
will be detailed in a later section. Different colors are also used to make clear distinction
between meta-model classes and their instances.

The rest of this section gives description of the FCDL data type system, details about
adaptive elements and their composition, reflection and distribution, relation between
types and instances, and annotations.

3.3.2 Data Types

The data type system is used to classify the data values within feedback control loops. To
make adaptive elements work together, the connected ports must be compatible in some
way. In this section we are interested in data type compatibility.

To enforce data type compatibility, the FCDL modeling language is using static typ-
ing. It allows type safety verification at design time and therefore it prevents typing er-
rors [Cardelli, 1997]. There are two FCDL entities that are concerned with data types:
ports and properties. For each port and property one has to explicitly declare the data
type that restricts the data values it accepts. Based on these information, the model is
checked for data type conformance.

Data Type System The FCDL modeling language aims at being technologically agnostic
model. The data type system therefore has to be generic enough to be translatable to type

44

3.3. Feedback Control Definition Language

systems of the various programming languages. One way of doing this is to define a
complete type system that consists of a number of primitive types (e.g., floats, integers,
strings) and constructed types (e.g. arrays, enumerations, structures) like Ptolemy [Xiong
and Lee, 2000] or CORBA [Object Management Group, 2012a]. The main drawback is that
it is usually difficult and makes the language bigger and more complex.

Instead of defining a complete type system, we have chosen to rely on a target pro-
gramming language for the type conformance verification. The data types of ports and
properties are specified using arbitrary names and for each name a developer provides a
mapping to a concrete data type for a given programming language. Then, for each tar-
get programming language we have to provide a data type verifier that checks whether
two types are compatible by relying of the facilities provided by the target language (e.g.
Class.isAssignableFrom in case of Java). A concrete mechanism is presented in Sec-
tion 5.1.

While developing a type conformance verifier based on a programming language in-
frastructure is arguably easier than developing a complete type system, there are some
shortcoming to this approach as well. For each target programming language we have
to develop a new verifier. The effort greatly depends on what facility is being provided
by the actual language and developers have to specify the extra mappings. Further, since
there are no predefined data type names an inconsistency across models can occur (e.g.
in some models a developer might choose int for integers in others int32).

Based on our experience so far, we believe that the advantages of this approach, namely
the simplicity, over the custom data type system development outweight these shortcom-
ings.

Data Type Representation Figure 3.4 shows the data type system representation in the
FCDL meta-model.

DataType

-mapping : Map[String,String]

ConcreteDataType

DataTypedElement

PortProperty

-name : string

NamedElement

ControlSystem

-value : string

DataValue

0..1 defaultValue

1dataType

1..*

dataTypes

Figure 3.4: FCDL meta-model excerpt related to data type system

ControlSystem is the top level element within the FCDL meta-model types package rep-
resenting a control system. It groups together concrete data types and related adap-
tive elements types (cf. Section 3.3.3).

45

. M F C A - S

NamedElement is used as a super class for any model elements that are identified by name.

DataType represents a FCDL data type.

ConcreteDataType models a concrete data type with appropriate mapping to different
programming languages.

DataTypedElement is a super class inherited by any model element defining a data types,
i.e., a port and a property.

DataValue represents a data value encoded as a string. The serialization mechanism is
external to the model since the model does not use these values in any way.

Polymorphic Adaptive Elements To improve reusability, the meta-model also supports
parametric polymorphism [Cardelli and Wegner, 1985], making adaptive elements work
uniformly on a range of data types. For example, the PeriodicTrigger element from the
running scenario should be able to pull/push any data. This is realized by using a data
type parameter for the data type definition of its ports. Essentially, a data type parameter
is a placeholder for a concrete data type that will be specified at some point later. A data
type parameter can be used instead of concrete data types anywhere a data type defini-
tion is required. The actual data type is then specified when the element is declared in a
composite using a data type argument. Depending on the nesting level it can either refer
to concrete data type or to another data type parameter. The top level composites cannot
define any data type parameters and therefore at the latest all parameters are resolved at
this level.

Unlike type variables like Java generics or Scala parameterized classes, the data type
parameters in FCDL do not provide any further assumption about the type itself (e.g.
operation it provides). There is no support for any type constraints in FCDL. We leave
this to the compiler that will raise a compile time exception on an attempt to compile code
generated from an incorrectly assigned data type arguments.

Figure 3.5 shows how the data type parameter is represented in the meta-model. It
will be further discussed in the following section when we present details about adaptive
elements and their composition, e.g. Figure 3.10 shows a concrete example of a Period-
icTrigger object model.

NamedElement

DataTypeParameter DataTypeArgument

DataType DataTypedElement

1

dataType

1

parameter

Figure 3.5: FCDL meta-model excerpt related to polymorphic data type system

46

3.3. Feedback Control Definition Language

3.3.3 Adaptive Element

The FCDL meta-model consists of two packages: types and instances. The former is
used to define adaptive element types, i.e., the elements structure such as ports and prop-
erties, while the latter defines adaptive element instances, i.e., configured adaptive ele-
ments. In this section we focus on FCDL types. Instances are covered later in Section 3.3.7.

An adaptive element type is the basic component within FCDL. It is an actor-like in-
dependent entity that encapsulates its state and behavior, and communicates with other
adaptive elements only via message passing through its ports. Figure 3.6 presents an ex-
cerpt of the types package related to the adaptive element type definition. It consists of
the following elements:

-active : boolean = false
-role : AdaptiveElementRole

+newInstance(feature : ReferencedFeature) : AdaptiveElementReference

AdaptiveElementType

NamedElement

-portType : PortType
-portMode : PortMode
-multiport : boolean = false
-provided : boolean = false

Port

-required : boolean = true
-defaultValue : DataValue

Property

ControlSystem

DataType

DataTypedElement

DataTypeParameter

0..*

1properties

parent

1..*

1

ports

parent

1..*types

1 dataType

0..*

typeParameters

Figure 3.6: FCDL meta-model excerpt related to adaptive element types

AdaptiveElementType models an adaptive element type. Next to the inherited name at-
tribute, it has a role, can be either passive or active and have one or more ports, mul-
tiple properties and data type parameters. The role attribute defines the intent of the
element. Following roles are defined in FCDL:

− Sensors are elements with no inputs that collect raw information about the state
of the running system and about its environment (e.g., using operating system
probes, services calls, log files).

− Effectors are elements with no outputs that carry out changes on the running sys-
tem using provided management operations (e.g., operating system commands,
service calls, configuration file modifications).

− Processors are elements with both inputs and outputs. They are used to process
and analyze incoming data (e.g., filter, stabilize, convert) or to drive the data flow
and manage storage properties (cf. Section 4.1). They can be used both for the

47

. M F C A - S

monitoring part as well as for the reconfiguration part. For example a data stabi-
lization filter can be used both to stabilize a sensor output or an effector input.

− Controllers are special cases of passive processors that are directly responsible
for the decision making process. Essentially, they are choosing the appropriate
actions based on the current target system state that has been inferred by moni-
toring part in order to get it into some desired state.

The remaining composite role is discussed in the next Section 3.3.4.

Port Adaptive elements communicate with one another via messages that are sent and
received through ports. They represent the adaptive elements inputs and outputs
(according to the port type attribute). The port mode denotes the communication style
that can be either: push, pull, or agnostic in which case the exact mode is resolved
during element instantiation according to the connected ports (cf. Section 4.1.6).
The FCDL ports are data typed. The data type reference specifies what values a port
accepts. The provided attribute separates regular input and output port from the
provided ports used for reflection (cf. Section 3.3.5). Finally, the multiport attribute
denotes whether a port can be connected to more than one peer.

Property enables external configuration of an adaptive element behavior without the
need of changing its code. It has a name, a data type, a default value and it can be
either required or optional. The value of a property is specified when the adaptive
element is declared in a composite (cf. Section 3.3.4) and all required properties
without default values must be specified. Properties can be though of as constants.
They are usually used as initial values for adaptive element configuration which can
be further altered at runtime using reflection (cf. Section 3.3.5).

Active Adaptive Elements An adaptive element can be either passive or active. A pas-
sive element executes upon a demand initiated by receiving a message on any of its ports.
An active element can additionally activate itself explicitly in a response to an external
event (e.g., a file changed, a timeout). It is associated with an event handler that is no-
tified when such an event occurs. When this happens, the event handler activates the
associated element by sending it a message though a special port called selfport which
is essentially a push input port implicitly defined for each active adaptive element. The
data sent though this port are usually the context information associated with the event.
The reason for this separation is that an adaptive element is an actor and as such it can
only be activated by receiving message. Any change to this model would break the en-
capsulation and thread safety guarantees.

Listing 3.1 shows an excerpt of the PeriodicTrigger implementation in Scala to better
illustrate the self-activation.

1 // instance of the implicit self port
2 val selfport: SelfPort[Long]
3

4 var trigger: Cancellable = _
5

48

3.3. Feedback Control Definition Language

6 /** Adaptive element initialization */
7 def init {
8 trigger = context.scheduler schedule (delay = 2 seconds, period = 5 seconds) {
9 // event handler code that will be called by the scheduler thread

10 // the data sent are the context information associated with the event
11 // in this case it is simply the current time
12 selfport put System.currentTimeMillis
13 }
14 }
15

16 /** Adaptive element activation */
17 def activate {
18 // the activation method is called by the actor framework when the element
19 // receives a message on any of its ports
20

21 // the value pushed over the self port is exposed via selfport variable
22 logger debug s"Activated at: {selfport.get}"
23 }
24

25 /** Adaptive element destruction */
26 def destory {
27 trigger.cancel
28 }

Listing 3.1: Example of adaptive element self-activation

Figure 3.7 shows an example of an adaptive element type definition, concretely the
PeriodicTrigger from the running example. It is an active processor defining three ports
(input, output and selfport) and one property (initalPeriod).

name = PeriodicTrigger
active = true
role = PROCESSOR

PeriodicTrigger :
AdaptiveElementType

name = input
portType = INPUT
portMode = PULL

input : Port

name = output
portType = OUTPUT
portMode = PUSH

output : Port

name = selfPort
portType = SELF
portMode = PUSH

selfPort : Port

name = initialPeriod
defaultValue = 5 seconds

initialPeriod : Property

system: ControlSystem

name = T

T : DataTypeParameter

name = long
mapping = JVM -> java.lang.Long

long : ConcreteDataType

ports

ports

ports

properties
types

typeParameters

dataType

dataType

dataTypes

dataType

: PeriodTrigger

in input

out output

initialPeriod=10s

Figure 3.7: Example of the of PeriodicTrigger adaptive element type definition. The left part in
the box is the FCDL graphical notation, the right part shows instance of the element from the FCDL
meta-model types package defining the element.

3.3.4 Composition

FCDL supports hierarchical organization of adaptive elements using composites. A com-
posite is an adaptive element created as an assembly of other adaptive elements including
other composites. For example, the architecture of the running example (cf. Figure 3.3)

49

. M F C A - S

contains two composites: ApacheWebServer, which represents the running web server,
providing all the necessary inputs and outputs for the connected ApacheQOS composite
representing the control.

Composites do not define behavior on their own, instead, they define instances of
adaptive elements they contain and connection between the ports of the contained ele-
ments. The port connections that cannot be satisfied within the composite can be made
available to the outside by promoting them to the ports defined by the composite itself.

With the ability to compose adaptive elements, we hope to foster reuse and increase
productivity. For example, we can rearrange the model of the running example from Fig-
ure 3.3 into a new composition as shown in Figure 3.8. The main advantage of the new or-
ganization is that it completely separates the utilization monitoring (UtilizationMonitor),
the control (QOSControl) and the target system (ApacheWebServer). We can now reuse
the control composite with different web servers just by swapping the ApacheWebServer
composite for a different one, e.g., LighttpdWebServer15. Similarly, we could the switch
monitoring part responsible for computing the utilization characteristics U to test differ-
ent strategies. This new arrangement will be used as the main implementation for further
illustrations.

UtilizationMonitor

in input

requestsCounter
: Accumulator

responseSizeCounter
: Aggregate

loadMonitor
: LoadMonitor

in input

out sum

out sum

in
 r

eq
ue

st
s

in
 s

iz
e

out utilization

in requests

in size ou
t

ut
iliz

at
io

n

(a) UtilizationMonitor composite

QOSControl

utilController
: UtilizationController

utilization
: UtilizationMonitor

out contentTree

scheduler
: PeriodTrigger

out utilization
in input out output

in utilization

out contentTreein requests in size

in requests in size

(b) QOSControl composite

ApacheQOS

control
: QOSControl

in contentTree

apache
: ApacheWebServer

in requests

in size

out requests

out size

out contentTree

co
nt

ro
l

la
ye

r
sy

st
em

la

ye
r

(c) ApacheQOS composite

Figure 3.8: FCDL model of the running example with composites

15http://www.lighttpd.net/

50

http://www.lighttpd.net/

3.3. Feedback Control Definition Language

Figure 3.9 shows the FCDL meta-model related to composition, containing the follow-
ing elements:

CompositeType

+newInstance(feature : R...

AdaptiveElementType

Feature

NamedElement

ContainedFeature

-property : Property

PropertyValue

-promotion : boolean = false

L ink

PortReference

Port

DataTypeArgument

0..*propertyValues

1 feature

1..*

1links

parent

1

type

1..*

1 features

parent

0..* typeArguments1 target

1 port

1..*

1ports

parent

1source

Figure 3.9: FCDL meta-model excerpt related to adaptive element composition

CompositeType models a composite. It is an adaptive element and as such it has a name,
a role that is always composite and it can define a number of ports, properties and
data type parameters. Additionally, it defines features and links.

Feature represents a declaration of an adaptive element type, denoted by the type refer-
ence.

ContainedFeature defines a configured feature of an adaptive element type that is con-
tained16 within the composite type. The configuration includes specification of all
required properties and data type arguments for all data type parameters that the
adaptive element type declares.

PropertyValue associates a property declared in an adaptive element type to a data value.

PortReference is a pair of a feature and a port that is defined by the feature adaptive
element type.

Link connects two ports establishing a communication link for messages. It is specified as
a pair of port references, a source and a target. There are two types of links denoted
by the promotion attribute: (1) connection, which is a link between two ports defined
by the contained adaptive elements, and (2) promotion, which is a link between a
port of a contained adaptive element and a port defined in the composite itself. A
connection between a source and a target port is possible if the source is an output
port, the target is an input port, the source port data type is assignable to the target
port data type, the port modes are the same, neither the source nor the target port
is promoted, and if any of the ports is not a multiport then there must be no other
connection involving this port. A promotion is valid if the port type, port mode, data
type, provided and multiport attributes are the same for both ports: the source port

16A composite can also reference adaptive elements (cf. Section 3.3.6)

51

. M F C A - S

that is the port to be promoted and the target port declared in the composite. Finally,
a port can be promoted only once.

Figure 3.10 shows an excerpt of the FCDL object diagram defining one connection
between the PeriodicTrigger output port and the UtilizationController input
port within the QOSControl composite.

name = QOSControl
role = COMPOSITE

QOSControl :
CompositeType

name = scheduler

scheduler :
ContainedFeature

name = PeriodicTrigger
active = true
role = PROCESSOR

PeriodicTrigger :
AdaptiveElementType : Link

name = output
portType = OUTPUT
portMode = PUSH

output : Port

name = UtilController
role = CONTROLLER

Util izationControl ler :
AdaptiveElementType

name = utilController

uti lControl ler :
ContainedFeature

name = utilization
portType = INPUT
portMode = PUSH

uti l ization : Port

: PortReference : PortReference

name = T

T : DataTypeParameter

: DataTypeArgument

double: ConcreteDataType dataType

dataType

dataType

parameter

typeArguments

typeParameters

port

feature

target

port

feature

source

ports

type

features

ports

links

type

features

Figure 3.10: An excerpt of the QOSControl composite object model

Deployment From the runtime point of view composites are units of deployment. In
order for a composite to be deployable, it must not define any data type parameters nor
any ports, but it can define properties. These composites are called main composites. For
example, the ApacheQOS is the main and deployable composite from the running scenario.
The ApacheWebServer composite is not deployable since it promotes ports.

3.3.5 Reflection

In Section 2.1.2 we have discussed the hierarchical organization of multiple feedback con-
trol loops. A scheme, where the loops at higher levels influence the loops at lower lev-
els, usually operating at different time scales in order to avoid any unexpected interfer-
ence. For example: changing dynamically estimates of the model parameters (adaptive
control), performing on-line optimization of the control model (model predictive control),
or changing the controller behavior depending on the prior knowledge about the perfor-
mance variables, disturbances and conditions (gain scheduling) [Patikirikorala et al., 2012].
In more complex scenarios, lower level loops manage sub-systems of a large system while
high-level loops act as coordinators of the lower level control systems, adjusting their con-
trol objectives in accordance with system-wide goals.

In general, the hierarchical control is realized by partitioning the control loops into
layers. To realize that, lower layers must provide some sort of reflection at runtime so
that loops from higher layers can modify the parameters or the structure of lower-layer
processes. From the adaptation perspective we can therefore recognize two categories
parametric adaptation and structural adaptation.

52

3.3. Feedback Control Definition Language

Parametric Adaptation Conceptually, we can see an adaptive element as a target system
itself and as such it can provide sensors and effectors (cf. Section 2.1.3 on page 13). This
enables adaptive elements to be introspected and modified in the very same way as the
underlying running system from the lowest layer. The provided sensors and provided effectors
are essentially the adaptive element touchpoints that make the elements reflective and
thereby enabling them to be adaptable17. This is a crucial feature that permits one to
hierarchically organize multiple feedback control loop in an uniform way and therefore
to realize complex control schemes.

ApacheQOS

co
nt

ro
l

la
ye

r

sysLoad
: SystemLoad

m
et

a-
co

nt
ro

l
la

ye
r

periodController
: PeriodController

out output

in load out period

sy
st

em

la
ye

r

sysLoadTrigger
: PeriodTrigger

in input

out output

in contentTree

apache
: ApacheWebServer

in requests

in size

out requests

out size

out contentTree
QOSControl

scheduler
: PeriodTrigger

in input out output

setPeriod

provided in setPeriod

... ...

provided effectorpromotion

provided in setPeriod

control
: QOSControl

Figure 3.11: FCDL schema of the running example with adaptive monitoring

Figure 3.11 shows an example of an adaptive monitoring added into the running adap-
tation scenario. Based on a periodically observed current system load using the System-
Load sensor, the PeriodController modifies the execution timing of the QOSControl us-
ing the setPeriod effector. The setPeriod is a provided effector that adjusts the trigger
rate of the PeriodicTrigger inside the QOSControl composite.

Technically, the provided touchpoints are realized as adaptive elements ports with
the provided attribute set to true. A provided sensors are push output multiports and pro-
vided effectors are push input multiports. There is, however, a crucial difference between
a regular port and a provided port. The messages sent from or to provided ports have a
higher priority and therefore will be processed before the messages transmitted over reg-
ular ports. The reason is to put higher significance to the reflection capabilities over the
regular element behavior. This is also reflected by their representation in the graphical
notation. Provided sensors are visualized as active sensors having one push output mul-
tiport and provided effectors are passive effectors with one push input multiport. Both
have an additional dotted line indicating to what element do they belong.

Structural Adaptation The adaptive element reflection is suitable for parameter adap-
tation. A structural adaptation, i.e., changing loop composition and bindings requires

17This should also explain why they are called adaptive elements

53

. M F C A - S

the underlying actor model to be reflective. This is realized by sensors and effectors that
operate on the actor model itself. These touchpoints include sensors observing adaptive
elements life-cycles (e.g. notifying when a new adaptive element is deployed), effectors
deploying new elements or removing the existing ones and changing connections between
them. By realizing the model reflection this way, we do not need any particular language
support since these touchpoints are just regular sensors and effectors implemented using
the underlying framework API.

For example, there are two possible structural adaptation scenarios related to our run-
ning example: (1) when the deployment of the QOSControl composite is dynamically con-
trolled based on the state of the Apache web server or (2) when there could be more than
one web server running at the same time, each having its own control loop. Figure 3.12

ApacheQOSDeployer

co
nt

ro
l

la
ye

r

newSysProc
: NewSystemProcessNotifier

deployer
: CompositeDeployer

controlDeployer
: ControlDeployer

out process

in process

out composite

in composite

sy
st

em

la
ye

r

apacheFilter
: ApacheProcessFilter

in process

out process

Figure 3.12: FCDL schema of a dynamic deployment of the running example

shows its realization in FCDL. It involves an active sensor that broadcasts notification ev-
ery time a new system process has been started. The connected processor selects processes
that are Apache web servers and pushes them to the controller. The controller uses the
deployer to spawn a new QOSControl composite configured with the correct Apache pro-
cess (e.g. setting the right path to the access log file). Obviously, a similar loop needs to be
built for stopping the control loop whose underlying web server has finished execution.

3.3.6 Distribution

It might not be possible to deploy the feedback control together at the same host where the
target system is running or the control is managing multiple distributed systems. There-
fore, some self-adaptive scenarios might require having parts of the managing system
running in different possibly remote runtime environments. For example, in our self-
adaptive scenario we need to deploy the control loop outside of the web server and access
the web server touchpoints remotely. Therefore distribution is important aspect that has
to be addressed in engineering self-adaptive system.

Transparent Remoting An often followed approach to distributed computing is to use
Remote Procedure Call (RPC). Essentially, it is a inter-process communication that involves
executing a program subroutine in a different runtime of the one of the program making

54

3.3. Feedback Control Definition Language

this call often on a different machine. There exist many implementations of this approach
in various programming languages18. Most of the implementations provide some sort
of proxies that when called take care of the input data serialization and its transmission
over the network to remote counterparts. They are responsible for calling the appropriate
methods, obtaining the results and sending them back to the originators.

In general, many of the RPC implementations intent to provide transparent remoting,
allowing to treat remote procedures or objects in the same way as the local ones. In other
words, they try to hide the complexity of remote communication over a computer network
from the developer allowing to go from local to remote calls with the justification that
whether a call is made locally or remotely has no impact on the correctness of the final
result. In practice however, because of call latency, different models of memory access and
issues of concurrency and partial failure, this assumption does not hold and as a result
RPC is a leaky abstraction19. This issue is discussed in detail by Waldo et al. [Waldo et al.,
1994].

Location Transparency A different approach to remote communication is by location
transparency that has been successfully used in Erlang [Armstrong et al., 1992] and other
actor based systems such as Akka 20. It is based on a concept of using ``logical'' names to
identify network resources and considering all communication between these resources to
be remote by default regardless whether they are local or remote. This means that sending
a message to an actor that resides in the same runtime is no different from sending it to
an actor that is running in a different runtime on a different host. For this to work, all
interactions must be purely message based and asynchronous. This also means that there
are less guarantees on message delivery. Most of the time implementations only guarantee
at-most-once delivery, i.e., no guaranteed delivery since a message might get lost due to the
inherently unreliable network communications. The key of this approach is to go from
remote to local by way of optimization instead of trying to go from local to remote by way
of generalization [Typesafe, 2013].

Message Ordering Earlier we have stated that one of the advantage of using an actor
system is the implicit thread safety (cf. Section 3.1.3). While this also holds in a dis-
tributed setting, there are new concerns that have to be taken into an account. For exam-
ple an actor might assume a certain ordering of messages that can be violated by external
non-deterministic effects such as the inevitable network delays that in turn can cause race
conditions. The way to prevent this is to attach an information about sending order to each
message so that the receiving participant can determine that messages have been sent in a

18The Wikipedia page about RPC provide a good overview: http://en.wikipedia.org/wiki/Remote_
procedure_call.

19A term popularized by Joel Spolsky in 2002 describing an abstraction that intends to reduce (or hide)
complexity while not completely hiding the underlying details. http://www.joelonsoftware.com/articles/
LeakyAbstractions.html

20Akka (http://akka.io) is the chosen underlying framework for our implementation, which will be further
discussed in Section 5.2.2.

55

http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Remote_procedure_call
http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://akka.io

. M F C A - S

different order. Some actor implementations (e.g. Akka) do that by default and thus they
guarantee message ordering per sender–receiver pair.

Adaptive Element References Being based on an actor model, FCDL supports remoting
using location transparency. Remote elements are represented as first class entities using
references. Figure 3.13 shows the meta-model excerpt related to element distribution.

Feature
CompositeType

ContainedFeature

-endpoint : URI

ReferencedFeature
1

composite

1
feature

1..*

1
features

parent

Figure 3.13: FCDL meta-model excerpt related to element distribution

At the composite level, instead of declaring a new contained feature as we have shown
in the Section 3.3.4, one can declare a referenced feature (ReferencedFeature). A refer-
enced feature is formed by a reference to an existing feature in some composite, and a
destination endpoint which is a URI 21 of the remotely running adaptive element. At run-
time, when the composite is instantiated, for each feature reference it skips creating new
adaptive element and instead it only creates an adaptive element reference that points to
the given endpoint.

remote-main remote-apache

network

ApacheQOS

in contentTree

in requests

in size

out requests

out size

out contentTree

Apache.apache
endpoint=
 akka.tcp://actress@remote-apache/user/Apache/apache

referenced feature

Apache

in contentTree

in requests

in size

out requests

out size

out contentTree

ApacheQOS.control

endpoint=akka.tcp://actress@remote-main/user/ApacheQOS/control

apache: ApacheWebServer

control
: QOSControl

composite feature

Figure 3.14: Running example with ApacheWebServer running remotely

Figure 3.14 shows the referenced feature representation in the graphical syntax. A
concrete example of element distribution is given in the second self-adaptive case study
that is discussed in Section 6.1.3.

21In this example we use the Akka URIs http://doc.akka.io/docs/akka/2.2.0/scala/remoting.html

56

http://doc.akka.io/docs/akka/2.2.0/scala/remoting.html

3.3. Feedback Control Definition Language

As we have discussed in Section 3.1.2 there are always design and implementation
trade-offs between the domain model and the domain framework. In this particular case
we can see, that while enabling the remote communication in the model is rather simple,
doing the same in the framework can be very difficult. In our case, however, the runtime
implementation is built on top of the Akka framework that well supports the principles
of location transparency (cf. Section 5.2.2).

3.3.7 Instances

The FCDL type meta-model that we have focused on so far provides an expressive and a
concise way for developers to define feedback control loop architectures. However, type
models are not very convenient for an automated analysis that usually involves traversing
instances rather than just types. For this purpose, FCDL defines instance meta-model in
the instances package.

It is important to realize that both the type and the instance meta-models are defined at
the same meta-modeling level. Therefore an instance of an AdaptiveElementType is not an
adaptive element instance, but it is just a type instance defining a new type (either a basic
type such as PeriodicTrigger or a composite such as QOSControl in the case of instantiat-
ing CompositeType). An adaptive element instance is an instance of AdaptiveElementIn-
stance type from the instance meta-model and can be conveniently created by invoking
newInstance method defined in the AdaptiveElementType.

AdaptiveElementType

name = scheduler

scheduler :
ContainedFeature

name = PeriodicTrigger
active = true
role = PROCESSOR

PeriodicTrigger :
AdaptiveElementType

name = QOSControl
role = COMPOSITE

QOSControl :
CompositeType

CompositeType Feature AdaptiveElementInstance

scheduler :
AdaptiveElementInstance

1..*

1 features

parent 1

type
1 feature

<<instanceOf>><<instanceOf>><<instanceOf>><<instanceOf>>

feature

<<conformsTo>>

<<conformsTo>>

features type

Figure 3.15: FCDL types and instances at two meta-modeling levels

Figure 3.15 illustrates the difference on the PeriodicTrigger example. It shows two
meta-modeling layers M1 and M0 and the two FCDL packages types and instances.
The top M1 layer defines the FCDL modeling elements such as AdaptiveElementType
and AdaptiveElementInstance. These are the elements of the FCDL abstract syntax. The
bottom M0 layer defines instances of the elements from the M1 layer. This is the layer
where the FCDL modeling happens. We start with the PeriodicTrigger type definition
by creating an instance of AdaptiveElementType. Next, we need to create a composite

57

. M F C A - S

that will declare this adaptive element. We thus define the QOSControl composite with a
feature called scheduler. By invoking the newInstance method on the QOSControl com-
posite, we create an AdaptiveElementInstance of the PeriodicTrigger as defined by the
scheduler feature.

An FCDL developer works exclusively with the type model defining adaptive element
types. The instances are used by FCDL tools. When the model is used as an input to some
tool such as code generator, it is instantiated and the tool works only with the instance
graph.

Instantiation Essentially, instantiation is just a model-to-model transformation between
the types and the instances meta-models, starting with the main composite types. The
instance meta-model is shown in Figure 3.16 and the full types meta-model in Figure A.2.

AdaptiveElementInstance

CompositeInstance

-portMode : PortMode

PortInstance

DataTypeInstancePropertyInstance

LinkInstance

+newInstance(feature : ContainedFeature) : AdaptiveElementInstance
+newInstance(feature : ReferencedFeature) : AdaptiveElementReference

AdaptiveElementType

+newInstance() : CompositeInstance

CompositeType

-endpoint : URL

AdaptiveElementReferenceFeature

Port

ConcreteDataType

Property

PropertyValue

<<creates>>

1..*

1 ports

parent

1..*

1

ports

parent

0..*connections

0..*

1 properties

parent

0..*

1 properties

parent

1type

1target

1

port

1

property 1dataType

1..*

1

instances

parent

0..*

1

promotions

parent

0..1 value

1..*

1

features

parent

1 feature

1source<<creates>>

<<creates>>

Figure 3.16: FCDL meta-model excerpt related to instances

By looking at the instance meta-model, the transformation is rather intuitive. Starting
with a CompositeType it does the following mappings:
− ContainedFeature maps to either AdaptiveElementInstance or CompositeInstance

depending on its type.
− ReferencedFeature maps to AdaptiveElementReference.
− Port maps to PortInstance.

– agnostic ports mode are resolved based on the rules defined in Section 4.1.6,
– if the data type is defined using data type parameter, a concrete data type is re-

solved by following the data argument definitions until its is defined by a concrete
data type,

– all connected ports are associated with the instance,
– if port is promoted a new instance of Promotion is created.

− Property maps to PropertyInstance

58

3.4. Summary

– if the data type is defined using data type parameter, a concrete data type is re-
solved in the same way as the port data type,

– if there is a property value associated, it is also associated with the instance.
− DataTypeParameters and DataTypeArguments are resolved into ConcreteDataTypes.

3.3.8 Annotations

FCDL is used as an input to various model manipulation tools, for example, the already
mentioned source code generator. For a tool to work properly, it might require some
additional details about some aspects of the model. We have already mentioned this in
the Section 3.3.2 where we discussed the data value serialization. This is a tool specific
information and as such it should not be directly reflected in the meta-model. Instead,
the FCDL meta-model uses annotations as a mechanism by which additional information
can be attached to model elements. Figure 3.17 shows the meta-model excerpt related to
annotations.

ModelElement

-name : string

Annotat ion

-name : string
-value : string

AnnotationNameValuePair

0..*

1annotations

parent

0..* arguments

Figure 3.17: FCDL meta-model excerpt related to annotation

All model elements that subclass ModelElement class can be annotated. An Annota-
tion is defined by its name and by a list of string name-value pairs. It is up to the tools to
define the appropriate schema of the annotations it requires.

3.4 Summary

In this chapter we have presented the domain specific modeling language called Feedback
Control Definition Language (FCDL), which is the backbone of our model-driven approach
to external self-adaptive software systems development. The purpose of the modeling
language is to expressively and concisely define architectures of external self-adaptive
software systems through feedback control loops. These loops are reified as first-class
entities at both design time and at runtime. The language is realized as an actor-oriented,
component-based meta-model that provides flexible abstractions for modeling feedback
control loops using hierarchically composed networks of collaborating actor-like entities
called adaptive elements. FCDL is a strongly typed modeling language that includes first-
class support for element composition, reflection and distribution across multiple runtime
environments. The language abstract syntax is further associated with an informal graph-
ical notation.

The language concepts were illustrated on a real-world self-adaptation scenario on
QoS management control of web servers by content delivery adaptation.

59

CHAPTER 4
Modeling Feedback Control

Architectures - Semantics

In the previous chapter we have described the concepts of actors, their compositions and
communication channels that form the abstract syntax of our domain-specific modeling
language, FCDL. However, this abstract syntax does not provide a clean semantics for this
model. Therefore, in this chapter, we complement the model structure with operational
rules that drive the execution of adaptive elements.

We start by describing FCDL semantics for adaptive element life-cycle, message pass-
ing and activations. In the second part we raise the level of abstraction on which the
element interaction is defined by extending the semantics with a notion of interaction
contracts that in turn enable better programming and verification support.

4.1 Model of Computation

The operational rules define the conditions for adaptive elements activation, as well as the
overall interactions and communications between them, forming together a Model of Com-
putation (MoC). A model of computation governs the semantics of the interactions [Brooks
et al., 2010], addressing problems related to component activation, execution discipline
and data propagation. It defines components in a concurrent system, their life-cycle and
how they communicate and compute data.

Different systems need different models of computations. For example systems with
continuous dynamics such as analog circuits and mechanical systems may desire MoC in-
volving continuous time while signal processing systems will use synchronous dataflow
MoC. Complex hybrid systems might even require multiple models of computation [Eker
et al., 2003]. In FCDL we describe architectures of feedback control which are reactive
systems responding to some stimulus. As we have shown in the motivating scenario
(Section 3.2), the communication between feedback processes is a mixture of data-driven

61

. M F C A - S

and demand-driven communication. This type of interaction is generally referred to as
a push-pull communication. A communication is push if it originates in a data producer
(e.g. sensor) or pull if it is initiated by a data consumer (e.g. a processor) [Zhao, 2003]. The
push-pull communication is studied in various systems, most notably in middleware ser-
vices. The CORBA event service [Object Management Group, 2012a], Service Component
Architecture [OASIS, 2007], but also Ptolemy 2 Component Interactions [Zhao, 2003] are
all examples of systems that incorporate this communication style.

Our MoC has been inspired by the Ptolemy Component Interactions (CI). While con-
ceptually both models of computation are close to one another, the way they are realized
is very different. This is caused by the conceptual differences between these systems.
Ptolemy models are executable. They can be directly simulated from within the model ed-
itor [Brooks et al., 2008]. An implementation of an actor is therefore tightly coupled with
the actor framework provided by the Ptolemy environment. On the other hand, there is
a loose coupling between Ptolemy actors and models of computation. Most of Ptolemy
actors are polymorphic in the sense that they can operate within more than one model
of computation. This together with the possibility of hierarchically composing different
MoCs makes Ptolemy usable in a wide range of systems (including the above mentioned
continuous dynamics and signal processing). FCDL models, on the other hand, are nei-
ther executable nor multi-domain. Adaptive elements are tightly coupled to one model of
computation (defined by this section) that is tailored for defining feedback control for soft-
ware systems. However, FCDL models are technologically agnostic. They are intended
to be used as inputs to code generators that synthesize running system implementations
based on the model definition for some particular runtime platform. Adaptive elements
are thus loosely coupled with the actor framework that makes them operable within mul-
tiple runtime platforms.

In Ptolemy, a model of computation like CI is implemented by a software component
called director that is responsible for ordering actors execution. A director uses multiple
receivers that represent the communication links1 defining the communication protocol.
FCDL on the other hand leaves the ordering of adaptive element execution to the under-
lying actor framework dispatcher and it embeds the model of computation directly into
the adaptive element. By using a delegate pattern [Grand, 1998] to separate the actual
adaptive element behavior from the director it can abstract over different actor framework
implementations.

4.1.1 Adaptive Element Director and Delegate

The reason for separating the concerns of general actor message processing and the specifics
of adaptive elements, i.e., life-cycle, activation and communication, is twofold: (1) to pro-
vide a higher-level abstraction encapsulating the structure and semantics defined in this
chapter over the low-level actor message passing, and (2) to have the adaptive element
implementations actor framework agnostic. For example, instead of directly sending mes-

1Communication channels in Ptolemy terminology

62

4.1. Model of Computation

sages to actors, we use abstractions representing ports that take care of the data commu-
nication. This separation also simplifies adaptive element implementation and testing
since it can be done in an isolation without dependency to any actor runtime. Moreover,
because the element code does not directly depend on any particular actor framework
library, it becomes reusable across multiple actor implementations within the same pro-
gramming language. On the other hand, the MoC has to be implemented for each actor
framework separately.

Actor

#receive(msg : Message)

AdaptiveElementDirector

+init()
+preActivate() : boolean
+activate()
+destroy()

AdaptiveElementDelegate

+getWidth() : int
+getName() : string

<<Interface>>
Port

+get(conn : int) : T
+get() : T
+getAll() : List<T>
+isEmpty() : boolean
+isEmpty(conn : int) : boolean
+isEmptyAll() : List<boolean>

<<Interface>>
InPushPort

+put(data : T)
+put(conn : int, data : T)
+putAll(data : T)

<<Interface>>
OutPushPort

+get(conn : int, timeout : Duration) : T
+get(timeout : Duration) : T
+get(conn : int) : T
+get() : T
+getAll(timeout : Duration) : List<T>
+getAll() : List<T>

<<Interface>>
InPullPort

+isEmpty() : boolean
+isEmpty(conn : int) : boolean
+isEmptyAll() : List<boolean>
+put(data : T)
+put(conn : int, data : T)
+putAll(data : T)

<<Interface>>
OutPullPort

<<Interface>>
SelfPort

+put(portName : string, conn : int, data : T)
+get(portName : string, conn : int, timeout : Duration) : T
+portWidth(portName : string) : int
+registerPort(port : Port)

<<Interface>>
DirectorContext

T

T

T TT

1context

1

delegate

<<declares>>

Figure 4.1: Adaptive element director and delegate

Figure 4.1 shows the separation between the actor part and the adaptive element spe-
cific part. An adaptive element director (AdaptiveElementDirector) bridges the underly-
ing actor framework (represented by the Actor class2) and adaptive elements (Adaptive-
ElementDelegate). The director is responsible for managing the actor message queue
and for the contained delegate life-cycle and activation. The delegate is where the actual
state and behavior of an adaptive element is encapsulated and who performs the actual
computation.

The AdaptiveElementDelegate is an abstract class. Concrete delegate classes should
be synthesized from the adaptive element type definition from FCDL by a source code
generator (cf. Section 5.2). A delegate communicates with its director through the Di-
rectorContext interface. It is a façade [Gamma et al., 1994] that gives access to some

2Usually, in actor frameworks one creates a new actor by extending some actor base class or implements an
actor interface.

63

. M F C A - S

common services provided by the framework and to the message passing mechanism
used by ports. Next to the director context reference, an adaptive element delegate has
the following methods:

init() is the initialization point of an adaptive element. It is invoked exactly once before
any other method is invoked. It gives an opportunity to initialize any state variables
an adaptive element might have. For active element, this is the place where event
handlers are registered.

destroy() is the opposite of the init method. It is called once, but this time, at the
end of the element life-cycle. It gives the element opportunity to clean up its state,
unregisters any event handlers and release any resources it might own.

preActivate() method is called before adaptive element activation to check activation
preconditions. It returns a boolean indicating whether the activation should pro-
ceed or not. This method provides a mechanism for the delegate to postpone its
activation, for example until all the input ports receive data.

activate() represents the main point of execution. Essentially, it is responsible for get-
ting values from the input ports, computing one or more results using these values
and finally sending them to the connected elements through the output ports. Every
adaptive element must implement this method.

We have already shown a part of the PeriodicTrigger implementation in Listing 3.1.
In Listing 4.1 we extend the example with the activation method implementation and
demonstrates some of the API.

1 class PeriodicTriggerDelegate(val ctx: DirectorContext)
2 extends AdaptiveElementDelegate {
3

4 // using context to create ports
5 val selfport: SelfPort[Long] = new DefaultSelfPort(ctx)
6 val input: InPullPort[T] = new DefaultInPullPort(ctx, "input")
7 val output: OutPushPort[T] = new DefaultOutPushPort(ctx, "output")
8

9 /** Adaptive element activation */
10 def activate {
11 logger debug s"Activated at: {selfport.get}"
12

13 Option(input.get) match {
14 case Some(data) => output put data // non-null data
15 case None => log info "No data available on the input port" // null
16 }
17 }
18 }

Listing 4.1: Example of adaptive element delegate

This code snippet declares a delegate class by extending the AdaptiveElementDele-
gate abstract class with the DirectorContext as the primary constructor parameter (lines
1 and 2). Next (lines 5-7), using the director context, the element's ports are defined. In this

64

4.1. Model of Computation

case we use default implementations, but a developer can create custom port implemen-
tations (cf. below). The activation method (line 10) behavior is rather intuitive. It simply
checks whether the received data contains some value (non-null) and if so, it forwards
them to whatever element is connected to the push output port.

4.1.2 Message Passing

In FCDL, the communications originate in ports. At the type level, a port can be config-
ured in one of the three modes: push, pull or agnostic. For now we will only consider push
and pull modes as the agnostic mode eventually maps to one of the former two (the details
of this mapping are described in Section 4.1.6). The push mode represents an interaction
that is initiated by the data provider while the pull mode interaction originates at the data
receiver. A connection is formed at the composite level by linking two ports, a source out-
put port and a target input port. Based on the connected port modes, a connection can be
either push (connecting two push ports) or pull (connecting two pull ports). We restrict
the model to only allow connections between ports configured in the same mode. The
very same restriction is done by the Ptolemy component interaction MoC. The reason is
that connecting a push output port to a pull input port indirectly implies using a queue
that acts as a storage component. Analogically connecting a pull output port to a push
input requires to use a scheduler mediating the communication by periodically pulling
and pushing the input and output ports. In FCDL, these interactions are intended to be
explicitly modeled in the architecture in order to properly define the storage and the trig-
ger mechanisms. For example, in the running example we explicitly place a scheduler
(PeriodicTrigger) that periodically pulls the system utilization value from the monitor
into the controller.

Ports Messages are sent and received via ports. However, ports never communicates
directly with the connected peers. Instead, they proxy the communications through the
director context. For example, invoking the put method on the OutPushPort will in turn
invoke the put method defined in the DirectorContext. This interface is implemented
by the adaptive element's director who is responsible for composing the message with
the given data, locating the appropriate target element reference, and directing the mes-
sage to it. Similarly, the director is also responsible for decoding an incoming message
and placing the data to the appropriate port before activating the delegate. The concrete
implementation of these operations are actor framework dependent.

The input push port (InPushPort) is basically a queue that stores the pushed value.
During the delegate activation it may or may not dequeue the value and use it for the
computation. If it does not, the value stays there. Default port implementation use regular
unbounded FIFO queue, but developers can define a custom implementation (e.g. using
a fixed size head dropping queue). The port offers a method isEmpty to check whether it
contains a value or not. This is useful for input data synchronization when, for example,
an activation should only proceed when two or more input ports have received data.

65

. M F C A - S

Multiports By default, one output port can be connected to only one input port and
vice-versa. A port that needs to support more than one connection has to be explicitly
defined as a multiport. In this case a port has an access to the underling ordered set of
its connections and can distinguish between them using an index. The connections are
indexed from 0 based on the connection order. All the port methods therefore take an
argument that specifies which communication link should be used. For convenience, the
port interface also provides methods that use implicitly the 0th link and methods that
executes over all connections (denoted by the All suffix). The current number of links can
be obtained by invoking the getWidth port method. This number can potentially change
during the execution since the model is dynamic and its structure can change at runtime
(cf. Section 3.3.5). Again this method is just a proxy to the director context portWidth
since it is the director which handles port connections.

Message Priority In the Section 3.3.5 we have mentioned message priorities. The mes-
sages sent from the provided ports, i.e., from provided sensors and effectors have higher
priority over the messages sent from the regular ports. This is to give higher significance
to the reflection over the regular behavior.

Queue and Scheduler A connection is only allowed between ports configured in the
same mode. In order to connect ports of the opposite modes we need to explicitly employ
a queue or a scheduller. A queue is a passive processor that has a push input port and a
pull output port. It enqueues all the inputs requests and dequeues them on demand made
by pull requests on its output port. A queue therefore acts as a data storage between an
element with a push output port and an element with a pull input port. There can be
many different queue implementations. For example, the Accumulator from the running
example is a queue that also processes the input data, in this case summing them together.

A schedule is an active processor with a pull input port and a push output port. It
actively pulls data from its input port according to some scheduling policy and pushes it to
its output. A scheduler is usually used to control the timing of requesting and distributing
data within the feedback loop. It acts as a mediator between an adaptive element with
a pull output port and an adaptive element with a push input port. For example, the
PeriodicTrigger from the running scenario is a generic timer based scheduler.

4.1.3 Push Communication

Push communication is realized using the fire and forget message passing. In this mode,
messages are sent asynchronously and the message producers do not expect any reply
from the message consumer. Figure 4.2 illustrates the push communication.

The figure contains two adaptive elements an active sensor A and a processor B that
are connected through push ports outA and inB. These elements could represent for ex-
ample the accessLog and the accessLogParser from the running scenario. At some point,
the event handler that is associated with the active sensor executes and requests the el-
ement to activate by pushing data d to its selfport. The actor framework is responsible

66

4.1. Model of Computation

inB: InPushPortoutA: OutPushPort

Delegate

7. put(d)

in inBout outA
Actor Framework

Dispatcher

12. enqueue(d)

Director

message queues

DelegateDirector

8. put(outA, 0, d)

9. send message Push(B, inB, d)

10. dispatch message and execute actor

13. preActivate()

14. activate()

11. decode message

15. get()

1. dispatch message and execute actor

4. preActivate()

5. activate()

2. decode message

selfport: SelfPort

6. get()

3. enqueue(d)

d

Figure 4.2: Push communication. Dash lines represents components time lines. Arrow represents
methods calls and message passing.

for dispatching the message to the correct actor message queue (sometimes also called
mailbox) and executing it at some convenient time (1.). The actual execution ordering is
decided solely by the actor framework dispatcher. Usually, an actor framework creates
a thread pool to execute as many actors concurrently as soon as they receive messages.
Upon execution a director first decodes the received message and based on its type it ex-
ecutes the proper behavior (2.). In this case it is a push message and the director extracts
the associated data from the message and enqueues it to the appropriate port, which is in
this case is the selfport (3.). Next, it executes the preActivation method to check with
the delegate if all preconditions are met, so the element can be consequently activated by
invoking the delegate activate method (5.). In this example, the delegate simply collects
the data from the self port (6.) and forwards it to its output port outA (7.).

The outA port handles the message sending through the director context by invoking
the put method (8.). The second argument 0 in the put method call indicates that the first
communication link should be used. The director encapsulates the given data d into a
Push message and sends it to the appropriate actor reference representing the connected
adaptive element (9.). This message will consequently activate B (10.). Similarly to the
work that has been done by the A director, the B director also first decodes the message
(11.), enqueues the data in the inB port (12.), checks the activation precondition (13.) and
activates the B delegate (14.). Finally, the B delegate obtains the data d by dequeuing its
input port inB (15.).

67

. M F C A - S

4.1.4 Pull Communication

The pull communication represents demand-driven interaction and it is realized by send
and receive message passing. Unlike the push fire and forget, in this mode, the message
producer expects a reply from the target and it will wait for it. While this might give an
``illusion'' of a synchronous communication, it is not since all messages in the actor model
are sent asynchronously. The message is also sent asynchronously just like in the push
mode, but additionally, it includes a reference to an actor to whom the message recipient
should reply. This new destination is an adhoc created actor solely for the purpose of
handling one particular reply and it will be destroyed as soon as it receives it. The received
reply is made available through a future, an object representing potential reply from the
destination [Baker and Hewitt, 1977].

There are at least three cases in which it might happen for the replay to never oc-
cur. (1) because, there are no guaranteed message delivery, the original request message
or the eventual reply might get lost (particularly when the communicating elements are
remotely distributed), (2) the target element crashed during the computation, or (3) the
target element took too long for it to finish the computation3. Therefore there has to be
always a timeout associated to each of the send and receive message call, terminating
the adhoc actor and raising an exception in the calling thread so it is not blocked forever
and resources are not leaked. The timeout can be set globally or individually using the
timeout parameter of the get methods defined in the InPullPort interface.

It is important to realize that by using timeouts, a computation may be terminated
before it finishes. For example, let us consider the running example. Instead of defining
the accessLog sensor that actively pushes the newly added log messages, we could have
just make a passive sensor that upon a request rereads the log file from the last known
position. A potential problem4 could occur during heavy load when there is lot of traffic
and therefore lot of new lines in the log file. With long delays between the consecutive
rereads of the log file, the pull message might eventually timeout before the sensor or the
connected parser are done. That is why, it is always good to minimize the size of a pull
chain (the number of consecutive pull requests).

Furthermore, there are some performance implications of using the pull communica-
tion. Each of the actor has to have a guard that keeps track of when it times out. Also,
because waiting for the reply will effectively block the executing thread, the thread pool
should be sufficiently sized otherwise a dead lock occurs. Therefore, in general, the push
style of communication should used where possible.

4.1.5 Element Activation

In general, an actor can be activated if its mailbox contains at least one message. The or-
dering of the activations is determined by the actor framework dispatcher. In FCDL, a

3This case is rather a consequence of employing timeouts for the pull communication.
4This is unlikely to happen since the access log file parsing is very fast unless the file is located on a dis-

tributed file system in a saturated network.

68

4.1. Model of Computation

message can only be sent by an adaptive element and therefore for a system to do some-
thing, there always has to be at least one active element. Once an active element is acti-
vated it consequently pulls or pushes data to its connected peers, which in turn causes
their peers to activate and so on and so forth. Eventually, all defined elements should be
activated at some point.

Definition 1 (Adaptive Element Activation) An adaptive element A can be activated by ei-
ther a push request over any of its push input ports, or a pull request over any of its pull output
ports.

Based on these rules, FCDL model can be checked that all defined elements will be
eventually active. An adaptive element is eventually active if

1. it is an active actor (an active actor can send a message to itself through the implicit
push input selfport), or

2. it has a pull output port connected to an eventually activated element, or

3. it has a push input port connected to an eventually activated element.

4.1.6 Agnostic Port Mode

The main motivation behind an agnostic port mode is to allow to define adaptive ele-
ments that can be used in both push and pull communication modes. For example, in
the running scenario we might need to further stabilize the outputs from the utilization
monitor and from the controller (cf. Figure 4.3). One way of doing so is to let the data
pass through an additional processor, a moving average filter (MovingAverage), which
computes a moving average value of a fix data series subset.

utilController
: UtilizationController

adaptor
: ContentAdaptor

scheduler
: PeriodTrigger

out utilization

in input out output
in utilization

in contentTree

out contentTreeutilizationAvg
: MovingAverage

in input out output

contentTreeAvg
: MovingAverage

in input

out output

utilization
: UtilizationMonitor

pull connection

push connection

Figure 4.3: Example of an agnostic port mode. The MovingAverage has both ports configured in an
agnostic mode and therefore it can be used in both pull and push communication modes.

If we tried to define such a filter, we would quickly realize a limitation in FCDL. The
problem is that the data from the utilization monitor are pulled while the data from the

69

. M F C A - S

controller are pushed. With only a push mode and pull mode we would therefore need
to define two different moving average processors, one usable for push connections and
the other for pull connections.

This is clearly not a good strategy as it results in lots of duplications, violating our
software engineering requirements. The moving average is an example of a set of adaptive
elements that are also referred to as transformers. They take an input data, modify it in
some way, and produce output data regardless whether the data are pushed or pulled.

A solution to this lies in the agnostic port mode. An agnostic port can be connected
to either push or pull ports. The actual mode is determined when the port is connected,
considering that connected ports must be configured in the same mode (cf. Section 4.1.2).

This impose several restrictions on using agnostic ports: (1) All agnostic ports within
an adaptive element must eventually resolve into the same communication mode. (2) All
agnostic input ports are considered to be synchronized. The element is only activated
when all inputs received data. In the pull mode it means that the element director pulls
all inputs before it executes the element. In the push mode, the director waits for all inputs
to receive data and only then it tries to activate the element. (3) Adaptive elements with
agnostic ports cannot be active, cannot have push input ports nor pull output ports.

4.2 Interaction Contracts

FCDL models an architecture of a feedback control system. In general architecture mod-
els are used for two main engineering concerns: for statical analysis and for mapping
the architecture into an implementation [Oreizy et al., 1998]. A key element in both con-
cerns is to have enough details about the data and control-flow interactions between the
components in the architectural description. The level of details determines the amount
of possible implementation guidance and the amount of programming and verification
support that will be available.

In this section we extend the operational rules defined in above model of computation
with more precise semantics that in turn will enable better programming and verification
support.

4.2.1 Motivation

In the running example we used two elements to sum the number of requests and the size
of responses. These processors simply accumulate the data received on their input port,
returning the sum of all inputs once they are pulled on their sum output port. Let us now
consider a more sophisticated5 Accumulator as depicted in Figure 4.4

It works as follows: when it receives data on its input port, it pushes to its output port
the input value plus the sum of all the input values it has received since the last time the
reset port was triggered, similarly, when pulled on the sum port, it returns the sum of all

5Inspired by the Ptolemy 2 Accumulator actor http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII8.1/
ptII/doc/codeDoc/ptolemy/actor/lib/Accumulator.html

70

http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII8.1/ptII/doc/codeDoc/ptolemy/actor/lib/Accumulator.html
http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII8.1/ptII/doc/codeDoc/ptolemy/actor/lib/Accumulator.html

4.2. Interaction Contracts

in input

: Accumulator

out sumin reset

out output
**

Figure 4.4: Improved Accumulator processor. The sum is a pull input and output is a push output
multiport.

the input values since the last reset, and finally receiving any data on its reset port, sets
the current accumulated value back to 0.

The above description makes the element interactions rather intuitive. However, for
example the fact that every time an input is received data will be pushed over the out-
put port is not explicitly stated in the architecture, but only informally expressed in the
documentation. Therefore, in more complex cases or with less rigid documentation, this
may potentially lead to different interpretations and incompatible implementations. Fur-
thermore, since there is only one activation method per adaptive element, the control flow
has to be manually coded. As a consequence, the element interactions becomes an integral
part of its implementation, reducing the possibility of formal analysis.

For example, let consider a possible implementation of the accumulator in Scala from
Listing 4.2.

1 val input: InPushPort[Long]
2 val output: OutPushPort[Long]
3 val reset: InPushPort[Any]
4 val sum: OutPullPort[Long]
5

6 var value = 0L
7

8 def activate() {
9 if (!input.isEmpty) {

10 // activated by a push on input
11 value += input.get
12 output send value
13 } else if (!reset.isEmpty) {
14 // activated by a push on reset
15 reset.get
16 value = 0
17 } else if (!sum.isEmpty) {
18 // activated by a pull on sum
19 sum send value
20 } else {
21 throw new IllegalStateException("Invalid execution")
22 }
23 }

Listing 4.2: Example of an Accumulator adaptive element implementation without an interaction
contract

While the code is still quite concise, there are two main issues with it. First, if we look
solely at the interface, it is a black box and there is no way to tell which of the ports will
be used. Second problem is that a developer has to manually follow the data flow and
synchronize the inputs in the case data from multiple input ports are needed at the same

71

. M F C A - S

time. In particular, a special attention should be paid to the lines 15 and 21. On the line 15
a developer has to make sure that the value from the port is consumed even though it is
not used for any computation as the reset port acts merely as a trigger. On the line 21 one
has to handle the control flow getting out of what is expected by throwing an exception.
This is particularly important in cases when the flow is more complicated.

In short, the problem is that the architecture as it is, is underspecified. A similar issue
of an architecture underspecification is discussed by Cassou et al. [Cassou et al., 2011]
for SCC systems (cf. Section 2.2.2). To address the architecture underspecification, they
prose to enrich SCC architecture descriptions by annotating components with interaction
contracts that precise their interactions. We extend this notion and make it applicable
to our model, i.e., to precisely specify all possible interactions between a hierarchically
organized networks of multiple-input, multiple-output adaptive elements. Concretely,
our extension to the original interaction contracts includes support for:
− Components with multiple output ports. Adaptive elements, unlike the SCC components,

may have multiple outputs.
− Multiports. Any adaptive element port can be linked to multiple targets which is not

the case of the SCC model.
− Composites. FCDL support hierarchical composition of adaptive elements while the

SCC components are all defined in a single scope.
− Optional interaction contracts. Since the SCC components have only one output, all in-

teraction contracts are compulsory and must be satisfied within an architecture. On
the contrary, adaptive elements can define an optional interaction (e.g. the reset func-
tionality in the Accumulator).

− Interaction contract completion verification. Complementing the optional interaction con-
tracts with a formal verification that checks whether all required ports are connected.

The use of interaction contracts brings two main advantages to the previously defined
model of computation:

1. By using interaction contracts we can assert certain architectural properties such as
consistency (cf. Section 4.2.5), determinacy (cf. Section 4.2.6), and completeness (cf.
Section 4.2.7).

The different possible activations are no longer hidden in the documentation. In-
stead, they are clearly visible in the interface of the adaptive element and therefore
amenable to automatized analysis and verification (cf. Section 5.3).

2. Interaction contracts enable to write more concise and natural implementation (cf.
Section 4.2.8). For example, the Accumulator can be rewritten as:
var value = 0L

def onInput(input: Long): Long = {
value += input
value

}

72

4.2. Interaction Contracts

def onReset(reset: Any) {
value = 0

}

def onSum(): Long = value

3. Moreover, interaction contracts allow the code generating facility can be greatly im-
proved. Instead of generating only one activate method for the entire adaptive el-
ement behavior, with interaction contracts it can generate precise methods for each
element activation (cf. Section 4.2.8). This way, the generated code is both prescriptive
(guiding the developer) and restrictive (limiting the developer to what the architec-
ture allows). It is arguably easier to implement the above three methods than to
write the complete implementation of the activate method as shown in Listing 4.2.

Before we can introduce the interaction contracts we need to formally define some
aspects of the FCDL meta-model that have been described in the previous sections. Con-
cretely, we use sets and tuples to formally define the main FCDL elements: an adaptive,
a port and a composite. These prerequisites (Section 4.2.2) are then followed by the in-
teraction contract definition for adaptive elements (Section 4.2.3) and for composite (Sec-
tion 4.2.4). Based on these three sections we formulate the architecture properties such
as consistency (cf. Section 4.2.5), determinacy (cf. Section 4.2.6), and completeness (cf.
Section 4.2.7). Finally, we present the interaction contract denotation and mapping into
activation method signatures (Section 4.2.8).

4.2.2 Prerequisites

Throughout this section we will use the following notations and definitions. The lower
case letters (e) and singular symbols (var) refer to scalar variables. Upper case letters (S)
or plural symbols (vars) refer to sets of variables. Bold text (true) represents constants.
For example ∃e ∈ S such that e = true. The monospaced font is used for functions and
references to elements defined in FCDL.

All sets are finite and possibly empty unless explicitly stated that a non-empty set (̸= ∅)
is required. We use

∪
M to denote a union of a set whose elements are sets themselves:

x ∈
∪
M ⇐⇒ ∃A ∈ M such that x ∈ A. We use as a placeholder that can replace a

variable, a tuple or a set so to match any value. For example if T = ({true, false} , {1, 2})
then (; 1) matches tuples (true, 1) and (false, 1). We use ⊥ to represent an ``absent''
value, a null, or to indicate no result value in a function call (a void).

In Section 3.3.2 we discussed the notion of a type system. For concrete examples in
this section we will use the Scala type system6 and reference its basic types such as Int,
Long and Double.

Using this notation, we formally define the main elements of the FCDL instance model
(cf. Section 3.3.7) that are necessary for describing interaction contracts. Some of the fol-
lowing definitions could have been written in a more compact way. However, since they

6As we have discussed in the Section 3.3.2, FCDL does not define a type system on its own but rather uses
a type system from the target programming language.

73

. M F C A - S

also denote structural invariants of the FCDL meta-model, the additional verbosity sim-
plifies their eventual mapping into the implementation and, although subjectively, makes
them easier to parse and express as structural constraints.

Definition 2 (Adaptive Element) An adaptive element is a tuple

A = (I,O, α, self)

where I is a set of input ports, O is a set of output ports, α is an interaction contract and self is
a port representing an active adaptive element self port or ⊥ in the case A is passive. An adaptive
element must always define at least one input or output port, |I ∪O| ≥ 1.

The Accumulator adaptive element is therefore defined as7:

({reset, input} , {sum, output} , ,⊥)

Definition 3 (Port) A port is a tuple

p = (type,mode,multi, prov, t, conns)

where type = {in, out, self} is the type of the port, mode = {⇑,⇓,⇕} indicates the mode of the
port to be respectively push, pull or agnostic, multi = {true, false} indicates whether the port
is a multi port or a single port, prov = {true, false} distinguishes between a regular port and a
provided port, t is the data type of values accepted by the port and conns is a set of connected ports.

For example, the Accumulator adaptive element from Figure 4.4 has following ports:
reset = (in,⇑, false, false, Any,), input = (in,⇑, false, false, Long,),
sum = (out,⇓, true, false, Long,), and output = (out,⇑, true, false, Long,).

For ports we define a function typeof (p) that for a given port p returns its data type t:

typeof (p) =

{
t if p is a port
T if p is an input multi port and T is vector of t

Given t1 and t2 to be data types, t1 ≤ t2 denotes that t1 is assignable from t2 (t2 conforms
to t1)8 and t = t1 ∪ t2 defines a data type union t such that t ≤ t1 ∧ t ≤ t2. For example, in
Scala such type union is the smallest common supertype of t1 and t2.

A function port_conns (p) for a given port p = (type,mode,multi, prov, t, conns) re-
turns the set of the ports conns that are connected to the port p or ∅ if there are no ports
connected to p.

Furthermore, through the text we use ⇑ to represent push mode, ⇓ for pull mode and
⇕ for agnostic mode. These symbols can be used as superscripts to sets of ports in which
case they act as predicates selecting only ports configured in the given mode. Let O be
a set of ports, O⇑ = {p|p ∈ O ∧ ispush (p)} where ispush (p) is a predicate that is true if

7The Accumulator interaction contract will be defined later in this section
8Scala rules for type conformance are defined in the §3.5.2 of Scala language specification [Odersky, 2011].

74

4.2. Interaction Contracts

p is in push mode. For example, let I and O be respectively the sets of input and output
ports of the Accumulator processor, I⇑ = {reset, input}, I⇓ = ∅, O⇑ = {output} and
O⇓ = {sum}.

Definition 4 (Composite) A composite Γ is an adaptive element (I,O, α,⊥) that additionally
defines two sets A,P , where A is a non-empty set of adaptive elements contained in Γ and P is a
set of port promotions.

In the scope of a given composite Γ, we define a function is_promoted (p) that return
true if a given port p has been promoted to one of the composite ports or false otherwise.

4.2.3 Definition and Properties of an Interaction Contract

The objective of an interaction contract is to describe the allowed interactions of an adap-
tive element. First we need to define what interactions activate an adaptive element. Once
an element is activated, it might need to request additional data through one or more of
its pull input ports and finally, depending on its intention and its internal state, it may or
may not push the results of the computation to one or more of its push output ports. To
formally specify this interaction information we introduce the concept of a basic interaction
contract for an adaptive element.

Definition 5 (Basic Iteration Contract) Let A be an adaptive element (I,O, α, self), a basic it-
eration contract α associated with an adaptive element A is a tuple

α = ⟨A;R; E ⟩

where A, R, E represents respectively the activation condition, the data requirements and the data
emissions that are defined as follows:

− Activation condition
A =⇑ (I1, . . . , In) | self |⇓ (out)

represents when an adaptive element is executed:

– ⇑ (I1, . . . , In) where Ii is either a unit set containing a single push input port in ∈ I⇑ or
a disjunction of such ports in1 ∨ . . . ∨ inn, ini ∈ I⇑, corresponding to data received on
these sets of ports Ii. When Ii is a disjunction of ports then any port receiving data can
be used.

– self corresponds to an activation caused by the self port and it is only applicable if A is
active. In such a case it must declare an interaction contract that has self in the activation
condition.

– ⇓ (out) where out ∈ O⇓ corresponds to a pull request on a pull output port out. A pull
requests always returns data to the calling adaptive element.

− Data requirements
R =⇓ (in1, . . . , inn)

where ini ∈ I⇓ and 1 < n ≤ |I⇓| represent ports that may be pulled during the execution.

75

. M F C A - S

− Data emissions
E =⇑ (out1, . . . , outn, outn+1?, . . . , outn+m?)

where outi ∈ O⇑ and 0 < n + m ≤ |O⇑| indicates to what output ports the result of the
adaptive element execution will be emitted. The ? marks an optional data emission. When
A =⇓ (out), out ∈ O⇓, then a value is always emitted to the corresponding pull output port
out, answering the pull request.

Using interaction contracts we can precisely specify interactions of an adaptive el-
ement. For example, the basic interaction contracts of the adaptive elements from the
running example (cf. Figure 3.3) are shown in the Figure 4.5 (Accumulator's interaction
contract will be discussed later).

 FileTailer

AccessLogParser
in lines

out size

out requests

out lines

in contentTree

ContentAdaptor

LoadMonitor
in requests

in size
out utilization

in input

out output
PeriodicTrigger

UtilizationController
in utilization

out contentTree

Figure 4.5: Interaction contracts of the running example adaptive elements

In the rest of this subsection we will detail the properties of interaction contracts. Con-
cretely, we will describe interaction contract composition, the differences between input
synchronization and disjunction, default interaction contracts for elements that do not
have any explicit contract assigned, provide some additional details regarding to agnos-
tic ports, multi ports and provided ports, and finally we will introduce interaction contract
inference for composites.

Contract composition An adaptive element can have multiple interaction contracts as-
sociated where the different activation conditions lead to different behaviors. For example
Accumulator outlined in the motivation (cf. Section 4.2.1) defines three different behaviors
depending on which port activates it.

Definition 6 (Contract Composition) Two or more basic interaction contracts α1, . . . , αn can
be combined together using the ∥ operator such as α1 ∥ · · · ∥ αn where n ≥ 2. Additionally, a

76

4.2. Interaction Contracts

basic interaction contract can be marked with ? indicating an optional interaction, but there have
to be always at least one compulsory contract.

For example, the two Accumulator adaptive elements have following interaction con-
tracts:
Accumulator (from 3.3):

in input

out sum

Accumulator (from 4.4):

*
in input

out sumin reset

out output

*

An interaction contract can be considered as a set α = {αi, . . . , αn} of basic interac-
tion contracts αi where n ≥ 1. This is also how it is represented in the meta-model (cf.
page 83). However, the notation with ∥ operator is preferred in text as it is more compact
and expressive. Furthermore, we define an interaction contract merge operator that is
used for interaction contract inference in composite types (cf. Section 4.2.4)

Definition 7 (Interaction Contract Merge Operator) Merge can be used both as a binary and
a unary operator. In the binary form, a merge of two basic interaction contracts α = α1⊗α2 where
α1 = ⟨A1;R1; E1 ⟩ and α2 = ⟨A2;R2; E2 ⟩ is an interaction contract α = ⟨A1 ∪ A2;R1 ∪
R2; E1 ∪ E2 ⟩. The unary form of the merge operation is

⊗α =

{
α1 ⊗ · · · ⊗ αn if α = α1 ∥ · · · ∥ αn

α if α is a basic interaction contract

Input Synchronization An activation conditionA =⇑ (I1, . . . , In) in the interaction con-
tract represents data synchronization. An element is then only activated when ∀Ii ∈
A,∃in ∈ Ii such that in received data.

...

...

...

...

in in1

out outin in2

in in3

Figure 4.6: Example of input synchronization

Let consider a passive adaptive element A with three input push ports and one push
output port (cf. Figure 4.6). An interaction contract

⟨ ⇑ (in1, in2, in3); ∅; ⇑ (out) ⟩

77

. M F C A - S

will only activate A if values have been pushed to all of its input ports and the activation
will happen as soon as the last port is pushed. This activation will correspond to a method:

def onIn1_In2_In3(in1: T, in2: T, in3: T): T

On the other hand an interaction contract

⟨ ⇑ (in1); ∅; ⇑ (out) ⟩ ∥ ⟨ ⇑ (in2); ∅; ⇑ (out) ⟩ ∥ ⟨ ⇑ (in3); ∅; ⇑ (out) ⟩

will activate A any time there has been a data pushed on any of its input ports. This
corresponds to three different activation methods:

def onIn1(in: T): T
def onIn2(in: T): T
def onIn3(in: T): T

Input Disjunction An activation condition A of an interaction contract can contain a
disjunction of ports. For example, let considered A from Figure 4.6 above. An activation
condition ⇑ (in1 ∨ in2, in3) will active A in two cases:

1. when data has been received on in1 and on in3, or
2. when data has been received on in2 and on in3.

It is important to mention that in the case like this, timing plays an important role. For
example, if in1 receives data before in2 and in2 receives data before in3, then the adaptive
element will be activated using values from ports in1 and in3. On the one hand this
introduces a non-determinism into the model since there are no guarantees about message
delivery timeliness. On the other hand, by defining activation using port disjunction it
should be clear that it does not matter which of the port has received the data first.

Let us consider again the contract ⟨ ⇑ (in1); ; ⟩ ∥ ⟨ ⇑ (in2); ; ⟩ ∥ ⟨ ⇑ (in3); ; ⟩
activating A any time data is received on any of its input ports. Similarly, a condition
⟨ ⇑ (in1 ∨ in2 ∨ in3); ; ⟩ will active A any time one of the input ports in1, . . . , in3
receives data. However, the crucial difference here is that in the former case there is a
different behavior associated with each of the three interaction contracts corresponding
to three different activation methods (cf. above). In the latter case, on the other hand, the
same behavior is always executed regardless of which port port activated the element.
There is therefore only one activation method:

def onIn123(in: T): T

Default Interaction Contracts An adaptive element that is not a composite and that
does not define an interaction contract is implicitly assigned a default one upon instanti-
ation. The contract is inferred according to the activation rules defined by the model of
computation, definition 1 (cf. Section 4.1.5).

78

4.2. Interaction Contracts

Definition 8 (Default Interaction Contract) LetA be a non-composite adaptive element (I,O, α, self),
a default interaction contract α is a set of basic interaction contracts:

{
⟨ ⇑ (ini);R; E ⟩ | ini ∈ I⇑

}
∪{
⟨ ⇓ (outi);R; E ⟩ | outi ∈ O⇓}∪{

⟨ self ;R; E ⟩ if self ̸= ⊥
∅ otherwise

where R =⇓ (I⇓) and E =⇑ (out1?, . . . , outn?), outi ∈ O⇑, n = |O⇑|

Agnostic Port Mode In the Section 4.1.6 we have discussed that the actual mode for an
agnostic port is determined at the point when the port is connected and that all agnos-
tic ports are configured in the same mode. Therefore, there are two possible interaction
contracts to be associated with an adaptive element that has one or more agnostic ports.

Definition 9 (Interaction Contract for an Adaptive Element with Agnostic Ports) Let A
be an adaptive element (I,O, α,⊥) with one or more agnostic ports. Its interaction contract must
be

• For the push mode
α = ⟨ ⇑ (ini, . . . , inn);⇓ (I); E ⟩ where ini ∈⇕ I, n = |⇕ I| and ⇕ O ⊆ E ∧ ∀outj ∈
O⇑ : (outj ∈ E ∨ outj? ∈ E).

• For the pull mode
α = ⟨ ⇓ (outi);⇓ (I); E ⟩ ∥ · · · ∥ ⟨ ⇓ (outn);⇓ (I); E ⟩ where ini ∈⇕ I, n = |⇕ I| and
⇕ O ⊆ E ∧ ∀outj ∈ O⇑ : (outj ∈ E ∨ outj? ∈ E).

The actual mode is determined at the instantiation. However, for activation method
generation the push mode is assumed since it makes the implementation more concise.

Multiports There is one exception to what has been defined for the multiports in the
model of computation (Section 4.1.2 on page 66). When using interaction contracts, input
multiports are implicitly synchronized and the resulting data type is a vector T9 of the
port data type t.

Provided Sensors and Effectors Technically provided sensors and effectors are ports as
well and thus they are also part of the interaction contracts. If a behavior represented by
a basic interaction contract α needs to broadcast a state change using a provided sensor
ps, it has to declare this fact explicitly in the emission part E of the interaction contract
α. Similarly, for each provided effector, there has to exist a basic interaction contract, that
actives the element upon a push request over the provided port. There are no special
constraints, but since the reason for defining a provided effector is to enable to adjust the
behavior of an adaptive element, the activation condition should not involve any other

9For example in Scala this vector is represented by scala.collection.immutable.Seq[T]

79

. M F C A - S

port. Moreover, there should not be any data requirements and the only possible emis-
sions should be directed to provided sensors. Therefore, a basic interaction contract for
a provided effector pe should match ⟨ ⇑ (pe); ∅; ⇑ (ps1, . . . , psn, psn+1?, . . . , psm?) ⟩where
psi is a provided sensor of the adaptive element defining pe.

For example the PeriodicTrigger from Figure 3.11 defining a provided effector set-
Periodhas its interaction contract: ⟨ self ;⇓ (input); ⇑ (output?) ⟩ ∥ ⟨ ⇑ (setPeriod); ∅; ∅ ⟩.
In case it also defined a provided sensor period allowing other elements to be notified
every time the scheduling changes, the second basic interaction contract would then be
⟨ ⇑ (setPeriod); ∅; ⇑ (period?) ⟩10.

4.2.4 Interaction Contracts for Composites

A composite is also an adaptive element and as such an interaction contract is also as-
sociated to it, enabling to fully assert the promised architecture properties. A composite,
however, does not provide any particular behavior on its own. It acts merely as a mediator
routing data from the promoted ports to the contained adaptive elements. Its interaction
contract therefore does not have to be explicitly specified, but instead, it is inferred from
the interaction contracts of the contained elements.

Let us consider the composite shown in Figure 4.7. It presents one composite contain-

in inA

in inB

out outA

out outB

in in1

in in2

in inC1
out out1in inC2

in inC3 in inC4

out out2

in in3 in in4

out outC1

out outC2

Figure 4.7: Example composite for the interaction contract inference illustration.

ing three adaptive elements with the following interaction contracts:

αA = ⟨ ⇑ (inA); ∅; ⇑ (outA) ⟩
αB = ⟨ ⇑ (inB); ∅; ⇑ (outB) ⟩
αC = ⟨ ⇑ (inC1, inC2);⇓ (inC3); ⇑ (outC1) ⟩ ∥ ⟨ ⇓ (outC2);⇓ (inC4); ∅ ⟩

The first part of the interaction contract is the activation condition. This can contain ei-
ther one or more push input ports, a self port or a pull output port. Since the depicted com-
posite defines a pull output port (out2) we can infer that it has to have one basic interaction
contract ⟨ ⇓ (out1); ; ⟩. For the two of its push input ports (in1, in2), however, there
are two alternatives. They can be either part of the same contract ⟨ ⇑ (in1, in2); ; ⟩

10The emission is optional since it should only broadcast a change if the newly set period is different from
the old one, which does not always have to be the case.

80

4.2. Interaction Contracts

or two different ones ⟨ ⇑ (in1); ; ⟩ ∥ ⟨ ⇑ (in2); ; ⟩. Simply by looking at the
composite structure or even at the interaction contracts associated to these ports we can-
not determine the exact activations, neither can we assess which of the pull input ports
(in3, in4) belongs to which activation nor what activation uses the push output port (out1).

To infer interactions, we need to explore the complete graph of connected ports, find-
ing all execution paths within the composite that interact with any of the promoted ports.
An execution path is an ordered set of basic interaction contracts that starts in some pro-
moted port from which it follows data propagation among adaptive elements.

We now illustrate the algorithm used for the composite interaction contract inference
using the above composite (cf. Figure 4.7). The formal definition of the algorithm is given
in Figure 4.8 and a concrete implementation in Scala is listed in Appendix A.4.

The first step in the contract inference is to compute the execution paths starting from
any of the composite ports that can be part of an interaction contract activation condition
(step 1 on line 6 of the algorithm). In our example, these ports are in1, in2 and out2.
We start with first port, in1. This port is promoted to the A input inA that is associated
with a single interaction contract αA. This contract thus becomes the first contract in the
execution path. Next, we need to explore all interaction contracts of the adaptive elements
that are connected to any of the ports associated in this interaction contractαA. We do that
by visiting all the communication links of all the ports that are part of the contract, but the
ones we have already visited (inA). There is only one other port, outA, associated with αA

and thus we continue the traversal to all its connections. The only connection from outA
goes to the inC1 that belongs to C. This element interaction contract is a composition of
two basic interaction contracts. We have to therefore find out what contracts are associated
with the port we are currently visiting. In this case it is the first basic interaction contract
⟨ ⇑ (inC1, inC2);⇓ (inC3); ⇑ (outC1) ⟩ that associates inC1 port. However, in general it can
be more than one contract since we can be visiting a push output port which can be part
of the multiple data emissions. At this point, the execution path so far is:

{⟨ ⇑ (inA); ∅; ⇑ (outA) ⟩, ⟨ ⇑ (inC1, inC2);⇓ (inC3); ⇑ (outC1) ⟩}

There are three remaining ports to visit, {inC2, inC3, outC1}. Both inC3 and outC1 are pro-
moted ports and thus are not connected to any elements within the composite. The inC2
leads to B element's port outB associated with the αB interaction contract. By adding this
contract to the execution path, the exploration is complete since there are no more ports
to visit (inB is a promoted port). The complete execution path that starts in the in1 port
is thus composed of these interaction contracts:

αin1 = {⟨ ⇑ (inA); ∅; ⇑ (outA) ⟩, ⟨ ⇑ (inC1, inC2);⇓ (inC3); ⇑ (outC1) ⟩, ⟨ ⇑ (inB); ∅; ⇑ (outB) ⟩}

In the very same way we can obtain the execution path for the in2 port:

αin2 = {⟨ ⇑ (inB); ∅; ⇑ (outB) ⟩, ⟨ ⇑ (inC1, inC2);⇓ (inC3); ⇑ (outC1) ⟩, ⟨ ⇑ (inA); ∅; ⇑ (outA) ⟩}

and for the out2 port:
αout2 = {⟨ ⇓ (outC2);⇓ (inC4); ∅ ⟩}

81

. M F C A - S

1: function composite_interaction_contract(Γ) ▷ Γ is a composite
2: I⇑ ← push input ports of Γ
3: O⇓ ← pull output ports of Γ
4: S ← self ports ports of Γ
5: exec_paths← ∅ ▷ The set of execution paths
6: for all port in I⇑ ∪O⇓ ∪ S do ▷ Step 1: Find all execution paths
7: S ← S ∪ exec_path (port)
8: end for
9: contracts← ∅ ▷ The set of merged execution paths

10: for all path in exec_paths do ▷ Step 2: Merge execution paths
11: contracts← contracts ∪ (⊗path)
12: end for
13: remove duplicates in contracts ▷ Step 3: Remove contract duplicates
14: ics← ∅ ▷ The final set of interaction contracts for Γ
15: for all α in contracts do ▷ Step 4: Maps to promoted ports
16: A,R,E ← α ▷ α = ⟨A;R; E ⟩
17: A′ ← {{promoted_port (p) |p ∈ Ai} |Ai ∈ A}
18: A′ ← {Ai|Ai ∈ A′ ∧ |Ai| > 0} ▷ Remove empty port disjunctions
19: R′ ← {promoted_port (p) |p ∈ R}
20: E′ ← {promoted_port (p) |p ∈ E}
21: ics← ⟨A′;R′; E′ ⟩
22: end for
23: return ⊗ics
24: end function
1: function exec_path(p, U = ∅) ▷ p is a port to visit, U is a set of already visited ports
2: U ← U ∪ {p} ▷ mark p as visited
3: α← ⊗ the interaction contracts associated with p
4: A,R,E ← α ▷ α = ⟨A;R; E ⟩
5: V ← (

∪
A ∪R ∪ E) \ U ▷ ports to visit

6: C ← {α}
7: for all v in V do
8: for all conn in port_conns (v) do
9: C ← C ∪

∪
exec_path (q, U)

10: end for
11: end for
12: return C
13: end function
1: function promoted_port(p) ▷ p is a port
2: return← the target of the promoted port p or ⊥ if p is not a promoted port
3: end function

Figure 4.8: Interaction contract inference algorithm for composites

Each of the execution paths defines what ports are used to activate elements, what are
their data requirements and data emissions. From the composite perspective, we are not
interested in the individual contracts, but rather in the global view, i.e., what are all the
ports involved in the element activations, data requirements and emissions. Therefore we
merge (cf. Definition 7) all individual contracts within an execution path together into a

82

4.2. Interaction Contracts

single basic interaction contract (step 2 on line 10):

⊗αin1 = ⟨ ⇑ (inA, inC1, inC2, inB);⇓ (inC3); ⇑ (outA, outC1, outB) ⟩
⊗αin2 = ⟨ ⇑ (inB, inC1, inC2, inA);⇓ (inC3); ⇑ (outB, outC1, outA) ⟩
⊗αout2 = ⟨ ⇓ (outC2);⇓ (inC4); ∅ ⟩

The only difference betweenαin1 andαin2 contract is the order of ports, but eventually they
represent the very same interaction and thus only one is needed. The next step is therefore
to remove all duplicate interaction contracts that only differ in the port ordering (step 3 on
line 13). Finally (step 4 on line 15), we have to map the ports back to their promotion where
applicable and discard the ports that are not promoted (cf. Figure 4.9). Again, we only
care about the ports that are promoted since these are the ports available on the outside of
the composite. By composing these two resulting interaction contracts we derive the final

Figure 4.9: Example of mapping interaction contract ports into the composite ports

contract for the composite: αΓ = ⟨ ⇑ (in1, in2);⇓ (in3); ⇑ (out1) ⟩ ∥ ⟨ ⇓ (out2);⇓ (in4); ∅ ⟩
Using this algorithm, we can infer the interaction contracts of the composites pre-

sented in the running example (cf. Figure 3.8). The resulting contracts are shown in Fig-
ure 4.10.

out requests

out size
in contentTree

 ApacheWebServer

QOSControl

in requests

in size

out contentTree

UtilizationMonitor

out utilization

in requests

in size

Figure 4.10: Interaction contracts of the composites from the running example

Representation of Interaction Contract in the Meta-Model Figure 4.11 shows the inter-
action contract representation in the FCDL meta-model. Both, the AdaptiveElementType
and AdaptiveElementInstance contains a reference to InteractionContract. However,

83

. M F C A - S

at the type definition, the association is optional and a default interaction contract will
be used during an instantiation if an element does not explicitly define one. The class
InteractionContract represents a basic interaction contract and a composite contract is
represented as a set.

+newInstance(feature : ...

AdaptiveElementType

AdaptiveElementInstance

Port

+merge(other : InteractionContract) : InteractionContract
+merge(others : List<InteractionContract>) : InteractionContract

InteractionContract

PortDisjunction

1..*contracts

0..*

associatedContracts

0..*

requirements

0..*reqEmissions 0..* optEmissions

1..*

activations

1..*

ports
1..*

1 ports

parent

<<creates>>

Figure 4.11: FCDL meta-model excerpt related to interaction contracts

4.2.5 Consistency

Besides main composites, adaptive elements are never used alone, instead, they are al-
ways part of an assembly in some composite Γ. By associating interaction contracts to
adaptive elements, we are therefore not only defining the adaptive elements interactions
themselves, but also implying certain interactions requirements for the other elements
within Γ in order to have consistent assembly.

For example, let consider element interactions from the following excerpt of the run-
ning scenario taken from Figure 3.3:

utilController
: UtilizationController

scheduler
: PeriodTrigger

loadMonitor
: LoadMonitor

out utilization

in input

out output

in utilization

For the scheduler to be able to pull data from its input port, it must define a contract
with data requirements R =⇓ (input). This implies that the connected element load-
Monitor must have one of its basic interaction contracts to be ⟨ ⇓ (utilization); ; ⟩
since utilization output port is connected to the PeriodicTrigger input. Similarly,
to push data to its output port, the scheduler defines an emission E =⇑ (output?) in
its associated contract implying that the connected element controller has a contract
⟨ ⇑ (utilization); ; ⟩. Since scheduler has neither push input ports, nor pull out-
put ports it must be an active processor defining one basic interaction contract with acti-
vation condition A = self . More formally we define these rules as contract consistency and
composite consistency.

84

4.2. Interaction Contracts

In the scope of a given composite Γ, we define a function port_contracts (p) that for
a given port p returns the interaction contract α associated to an adaptive element A that
defines the port p as its either input or output port.

Definition 10 (Contract Consistency) Given a composite Γ an interaction contract α associ-
ated with an adaptive element defined inΓ is consistent if one of the following conditions is satisfied:

− if α is a basic interaction contract α = ⟨A;R; E ⟩ then:

− pull inputs consistency
∀ini ∈ R ∧ ¬is_promoted (ini) , ∀outj ∈ port_conns (ini) :

∃α′ ∈ port_contracts (outj) such that α′ = ⟨ ⇓ (outj); ; ⟩
− pull outputs consistency

if A =⇓ (out) then
∀ini ∈ port_conns (out) ∧ ¬is_promoted (ini) :

∃α′ ∈ port_contracts (ini) such that α′ = ⟨ ;R′; ⟩ ∧ ini ∈ R

− push outputs consistency
∀outi ∈ E ∧ ¬is_promoted (outi) , ∀inj ∈ port_conns (outi) :
∃α′ ∈ port_contracts (inj) such that
α′ = ⟨A′; ; ⟩ ∧A′ =⇑ () ∧ inj ∈

∪
A

− push inputs consistency
if A =⇑ () then
∀ini ∈

∪
A ∧ ¬is_promoted (ini) ,∀outj ∈ port_conns (ini) :

∃α′ ∈ port_contracts (outj) such that
α′ = ⟨ ; ; E′ ⟩ ∧ (outj ∈ E′ ∨ outj? ∈ E′)

− if α is a composite interaction contract α = α1 ∥ · · · ∥ αn then each αi is considered individu-
ally.

Definition 11 (Connected Optional Interaction Contract) Within a given composite Γ an
optional interaction contract α = ⟨A;R; E ⟩? associated with some adaptive element defined in Γ

is considered connected if ∃p ∈ P such that port_conns (p) ̸= ∅ where P is a set of ports defined
as:

P =


∪

A ∪R ∪ E if A =⇑ (. . .)

R ∪ E if A is self
{out} ∪R ∪ E if A =⇓ (out)

Definition 12 (Composite Consistency) A composite Γ is consistent if all compulsory and all
connected optional interaction contracts associated with all adaptive elements defined in Γ are con-
sistent.

4.2.6 Determinacy

An interaction contract can be composed of one or more basic interaction contracts defin-
ing multiple activation condition for an adaptive element. It is important to make sure
that these activation conditions do not interfere with one another and that a given data

85

. M F C A - S

flow always triggers only one basic interaction contract. An interference occurs for exam-
ple if two or more interaction contracts shares the same push input port for its activation
condition. In such a case the activation is not deterministic since it is not possible to say
which contract should be executed when the data arrives. For example, considering the
adaptive element A from Figure 4.6, an interaction contract

⟨ ⇑ (in1, in2, in3); ∅; ⇑ (out) ⟩ ∥ ⟨ ⇑ (in1); ∅; ⇑ (out) ⟩

is non-deterministic, because the two composed basic contracts shares the same push in-
put port in their activation conditions.

Definition 13 (Contract Interference) Two basic interaction contracts ⟨A;B;C⟩ and ⟨A′;B′;C ′⟩
associated with A interfere with each other if

∪
A ∩

∪
A′ ̸= ∅

Definition 14 (Contract Determinacy) A contract composition α1 ∥ · · · ∥ αn is deterministic
if each basic interaction contract αi does not interfere with any of the others.

Definition 15 (Composite Determinacy) A composite Γ is deterministic if all interaction con-
tracts of all adaptive elements defined in Γ are deterministic.

4.2.7 Completeness

Interaction contracts also allow to verify whether an adaptive element interaction has been
completely specified. For each port that has been defined in the adaptive element type,
there exists an interaction contract that is using data from this port either for its activation,
data requirements or data emissions.

Definition 16 (Contract Completeness) Given an adaptive element A = {I,O, α, self} an
interaction contract α = ⟨A1;R1; E1 ⟩ ∥ · · · ∥ ⟨An;Rn; En ⟩ where n ≥ 1 associated with A is
complete if:

I⇓ =
n∪

i=1

Ri ∧ O⇑ =
n∪

i=1

Ei ∧ I⇑ ∪O⇓ =

{ ∪n
i=1 Ai\ {self} if self ̸= ⊥∪n
i=1 Ai otherwise

4.2.8 Activation Methods and Adaptive Element Acts

The behavior of an adaptive element is a function that is executed in a reaction to data
being received on the element input ports (function arguments) producing a result that
is disseminated over the element output ports (function return values). An interaction
contract give details on this function and therefore the denotational semantics of an in-
teraction contract is of a function type. The interaction contract denotation enables to
synthesize adaptive elements activation method signatures. Instead of having one activa-
tion method as is in the case of adaptive element delegate (cf. Section 4.1.1), we can now
provide multiple methods for the fine-grained activations described by interaction con-
tracts. Each basic interaction contract can be translated into a method that will be called

86

4.2. Interaction Contracts

by the delegate at the appropriate time, when the activation condition is satisfied. To
clearly separate this, we encapsulate all the interaction contracts activation methods in a
separate class called adaptive element act. The adaptive element delegate activate method
can then be automatically generated and the execution outsourced to the appropriate ac-
tivation method in the new adaptive element act class.

Interaction Contract Denotation The mapping of an interaction contract into a function
type is rather intuitive. An interaction contract α = ⟨A;R; E ∪ E? ⟩ denotes a function
A×R×E?→ E where the E and E? represents respectively the mandatory and optional
data emissions. The activation condition A together with the data requirements R and
optional data emissions E? form the function parameters while the mandatory emissions
E determine its return type. To indicate the optionality of the interactions for both the data
requirements (pull inputs) and emissions (push output), we further define the following
functions (cf. next paragraph for their concrete representations in Scala):

push_typeof (p) = typeof (p)→ ()

pull_typeof (p) = ()→ typeof (p)

A special case is when an adaptive element is active. In this case the first function
parameter is of type typeof (self) where self is the adaptive element self activation port
(Definition 2). For example, an interaction contract ⟨ ⇑ (in1);⇓ (in2); ⇑ (out1, out2, out3?) ⟩
denotes a function

typeof (in1)× pull_typeof (in2)× push_typeof (out3)→ typeof (out1)× typeof (out2)

and the interaction contract of the PeriodicTrigger ⟨ self ;⇓ (input); ⇑ (output?) ⟩ de-
notes a function

typeof (self)× pull_typeof (input)× push_typeof (output)→ ⊥

The complete denotation [[α]] of an interaction contract α is summarized in Figure 4.14 on
page 90.

Activation Methods Signatures Now we show an example of how the function types
can be mapped into Scala methods. We use following interfaces to encapsulate the op-
tional interactions such as data requirements and optional data emissions.

typeof (p)→ () ⇒ Push[typeof (p)] for optional data emission
()→ typeof (p) ⇒ Pull[typeof (p)] for data requirements

The Push and Pull (cf. Figure 4.13) are interfaces representing specialized variants of the
OutPushPort and InPullPort (cf. Section 4.1.2). The main difference is in handling mul-
tiports that are effectively transparent when using interaction contracts (cf. Section 4.2.3,
page 79).

The last interaction contract example from the previous section ⟨ ⇑ (in1);⇓ (in2); ⇑
(out1, out2, out3?) ⟩maps to the following Scala activation method:

87

. M F C A - S

def activate(in1: R1, in2: Pull[R2], out3: Push[S3]): (S1, S2)

where R1, R2 and S1, . . . , S3 are respectively the data types defined for the input ports
typeof (in1) , typeof (in2) and output ports typeof (out1) , . . . , typeof (out3). The inter-
action contract associated with the PeriodicTrigger ⟨ self ;⇓ (input); ⇑ (output?) ⟩maps
to:

def activate(selfport: Long, input: Pull[T], output: Push[T]): Unit

The first argument represents data pushed through the selfport by the associated event
handler (cf. Listing 3.1, line 12). The second argument, input, is a pull wrapper that when
called pulls the data from the input port. Finally, the output parameter is a push wrapper
for the optional emission over the output port. Since there are no required data emissions,
the method returns nothing. The type argument T used in both wrappers suggests that
PeriodicTrigger is a polymorphic adaptive element, i.e., it defines a data type parameter
of the same name (cf. Section 3.3.2). In Figure 4.2.8 we provide activation methods of all
the elements participating in the running example.

Interaction Contract Acts Figure 4.12 shows the difference between the Scala user code
needed for implementing the Accumulator processor from the beginning of this section
(cf. Section 4.2.1) and the new code in the adaptive element act.

def activate() {
if (!input.isEmpty) {
// activated by a push on input
value += input.get
output send value

} else if (!reset.isEmpty) {
// activated by a push on reset
reset.get
value = 0

} else if (!sum.isEmpty) {
// activated by a pull on sum
sum send value

} else {
throw new IllegalStateException("

Invalid execution")
}

}

(a) delegate activation method

def onInput(input: Long): Long = {
value += input
value

}

def onReset(reset: Any) {
value = 0

}

def onSum(): Long = value

(b) act methods

Figure 4.12: Differences between adaptive element delegate and act activations

The more natural implementation in 4.12(b) is because we raised the level of abstrac-
tion. With interaction contract, it is the adaptive element delegate who is responsible for
matching the port state with the appropriate activation denoted by the interaction contract
activation condition. Furthermore, another advantage of using the interaction contract is
that the generated interface is both prescriptive and descriptive. It guides the developer

88

4.2. Interaction Contracts

while at the same time it only allows to perform permitted interactions. It does not pro-
vide any means to allow an interaction that has not been specified within the contract11.

Actor

AdaptiveElementDirector AdaptiveElementDelegate <<generated>>
AdaptiveElementActs

+get(timeout : Duration) : T
+get() : T

<<Interface>>
Pull

+put(data : T)

<<Interface>>
Push

<<Interface>>
DirectorContext

T T

1 context

1

delegate

1

_acts

1context

< < u s e > >< < u s e > >

Figure 4.13: Interaction contract act

Figure 4.13 shows the relation between an adaptive element delegate and an adap-
tive element act synthesized from the element interaction contracts. Essentially, it is yet
another delegation that raises the abstraction level on which the implementation is pro-
vided. Also, by further delegating the adaptive element life-cycle methods, we can fully
generate the adaptive element delegate class so user only need to edit the adaptive element
acts. Editing adaptive element act class should make the development better focused than
writing the delegate code (cf. Figure 4.12) where one has to take care about the state flow
manually.

11Even if a developer stored a reference to the given Push or Pull interaction and spawned a new thread that
used them, there would not be any interaction as the underlying objects are detached from the ports after the
activation method executes. However, there is no compilation time enforcement and only a runtime exception
is thrown.

89

. M F C A - S

Denotation of a push activation.
Uses input ports disjunction for the function parameters representing the activation.

[[⟨ ⇑ (I1, . . . , In);⇓ (in1, . . . , inm); ⇑ (out1, . . . , outr, outr+1?, . . . , outs?) ⟩]] =
n∏

i=1

∪
{typeof (p) |p ∈ Ii} ×

m∏
j=1

pull_typeof (inj)×
s∏

l=r+1

push_typeof (outl?)→

r∏
k=1

typeof (outk)

Denotation of a self activation.
Similar to the push activation, but only uses data from the self port for the function parameters
representing the activation.

[[⟨ self ;⇓ (in1, ..., inm); ⇑ (out1, . . . , outr, outr+1?, . . . , outs?) ⟩]] =

typeof (self)×
m∏
j=1

pull_typeof (inj)×
s∏

l=r+1

push_typeof (outl?)→

r∏
k=1

typeof (outk)

Denotation of a pull activation.
Similar to the self activation, but only uses data from output pull port for the function parameters
representing the activation.

[[⟨ ⇓ (out);⇓ (in1, ..., inm); ⇑ (out1, . . . , outr, outr+1?, . . . , outs?) ⟩]] =

typeof (out)×
m∏
j=1

pull_typeof (inj)×
s∏

l=r+1

push_typeof (outl?)→

r∏
k=1

typeof (outk)

Denotation of an interaction contract composition.

[[α1 ∥ · · · ∥ αn]] = [[α1]]× · · · × [[αn]]

Denotation of an optional interaction contract.

[[α?]] = [[α]]

Figure 4.14: Interaction contracts denotation. The first three denotations only differ in the first part
of the function type that represents the activation parameters.

90

4.2. Interaction Contracts

Adaptive Element Interaction Contract / Method Signature
FileTailer ⟨ self ; ∅; ⇑ (lines) ⟩

def activate(selfport: String): String

AccessLogParser ⟨ ⇑ (lines); ∅; ⇑ (requests, size) ⟩

def activate(lines: String): (Int, Long)

ContentAdaptor ⟨ ⇑ (input); ∅; ∅ ⟩

def activate(input: Double): Unit

LoadMonitor ⟨ ⇓ (utilization);⇓ (requests, size); ∅ ⟩

def activate(requests: Pull[Int],
size: Pull[Long]): Double

PeriodicTrigger ⟨ self ;⇓ (input); ⇑ (output?) ⟩

def activate(selfport: Long,
input: Pull[T], output: Push[T]): Unit

⟨ ⇑ (setPeriod); ∅; ∅ ⟩

def onSetPeriod(input: Long): Unit

UtilizationController ⟨ ⇑ (utilization); ∅; ⇑ (contentTree) ⟩

def activate(utilization: Double): Double

Accumulator (from 3.3) ⟨ ⇑ (input); ∅; ∅ ⟩

def onInput(input: T): Unit

Accumulator (from 4.4) ⟨ ⇑ (input); ∅; ⇑ (output) ⟩

def onInput(input: T): T

(or in case when input is a multiport)

def onInput(input: Seq[T]): T

⟨ ⇑ (reset); ∅; ∅ ⟩?

def onReset(reset: Any): Unit

⟨ ⇓ (sum); ∅; ∅ ⟩

def onSum(): T

MovingAverage (from 4.3) ⟨ ⇑ (input); ∅; ⇑ (output) ⟩

def activate(input: T): T

Figure 4.15: Examples of activation method signatures

91

. M F C A - S

4.3 Summary

In this chapter we have complemented FCDL description with semantics governed by a
model of computation. It describes FCDL components behavior, i.e., how they commu-
nicate and compute data. Then, we have presented the FCDL communication model that
supports a mixture of data-driven and demand-driven communications (push-pull). In
order to increase precision of adaptive element interactions and the level of abstraction
on which it is described, the model of computation is further extended by the notion of
interaction contracts (cf. Figure 4.16).

FCDL Model of Computation

Actor Model

Interaction Contracts

le
ve

ls
 o

f a
bs

tra
ct

io
n

Figure 4.16: The different levels of FCDL semantic abstraction

The use of interaction contracts allows to assert certain architectural properties such
as consistency, determinacy, and completeness as well as to further raise the code level
abstraction that should enable more concise and natural implementations of adaptive el-
ements.

The resulting architecture model is used as an input into model manipulation tools
such as model verifiers or source code generators. The next chapter presents details about
these tools, which have been incorporated into a software package called the ACTRESS
modeling environment.

92

CHAPTER 5
The A Modeling

Environment

In the last two chapters we have presented a domain-specific modeling language for feed-
back control architectures. We discussed the use of models offering higher expressiveness,
ease of use and their potential to lower accidental complexities that in turn should result
in a higher productivity. For this to be true, however, models have to be associated with
software development tools that automate tasks such as model construction and code
generation [Sendall and Kozaczynski, 2003]. In this chapter we introduce a set of tools fa-
cilitating FCDL development that has been implemented inside a modeling environment
called A.

The aim of A is to provide support for an integrated development of external
self-adaptive software systems using FCDL, i.e., integrating self-adaptive control mecha-
nisms into software systems through feedback control architectures. We do not focus on
developing the control mechanisms themselves. For this, there already exist sophisticated
tools [Hellerstein et al., 2004] such as MATLAB or Ptolemy (cf. Section 2.2.2 on page 25).

In its core, A consists of a series of model transformations and verification pro-
cesses automatizing various aspects of FCDL development. We start by presenting the
modeling support for authoring FCDL models. Next, we give an overview of the code
generation process that synthesizes system implementation. This is followed by the dis-
cussion of the FCDL model verification support. At the end of the chapter, we discuss
A integration into the Eclipse Integrated Development Environment (IDE)1.

5.1 Modeling Support

The A modeling support provides a reference implementation of the FCDL meta-
model and tools facilitating FCDL models authoring. The implementation is based on

1http://www.eclipse.org

93

http://www.eclipse.org

. T A M E

the EMF meta-modeling technology. Figure 5.1 shows a high-level overview of the model
support components and artifacts. The heart of the modeling support is a domain-specific

Modeling Support

xFCDL
file

xFCDL
model

FCDL
model

JVM
model

xFCDL compiler

Text-to-Model
transformation

xFCDL to JVM
transformation

Model-to-Model
transformation

xFCDL to FCDL
transformation

Xtext

uses

Artifact Actress
component

External library
or tool

Model-to-Model
transformation

Figure 5.1: Overview of the A modeling support

language called Extended Feedback Control Definition Language (FCDL) for creating FCDL
models. It is a textual DSL for creating FCDL models also supporting modularization
and adaptive element implementation using a Java-like expression language. FCDL is
built using Xtext2, which is an EMF-based framework for domain-specific and general-
purpose programming languages development. It covers many aspects of a language
infrastructure including sophisticated Eclipse IDE integration (cf. Section 5.4).

In the next subsection we explain why we have created a DSL for FCDL modeling.
Next, we give an overview of the main concepts and features of the DSL and how it can
be used to specify adaptive element implementations. This is followed by details about
the expression language integration and how it transforms into FCDL.

Why Eclipse and Eclipse Modeling Framework? We have chosen to use the Eclipse
platform and EMF for A implementation as they are both open source and mature
technologies used extensively in both academia and industry. EMF comes with a wide
range of supporting tools and technologies that facilitate domain-specific modeling3. Fur-
thermore, EMF is well integrated within the Eclipse IDE, providing a complete integrated
development experience.

There are other meta-modeling environments such as MetaCase's MetaEdit+4 or Jet-
brain's MPS 5. However, they are either commercial (MetaEdit+) or integrated with a com-
mercial IDE (MPS).

2http://www.eclipse.org/Xtext/
3http://eclipse.org/modeling/
4http://www.metacase.com/mwb/
5http://www.jetbrains.com/mps/

94

http://www.eclipse.org/Xtext/
http://eclipse.org/modeling/
http://www.metacase.com/mwb/
http://www.jetbrains.com/mps/

5.1. Modeling Support

5.1.1 Why a Domain-specific Language?

There are at least tree possible ways how to create FCDL models. One approach is to
use directly the FCDL meta-model and create its instances using some generic model-
ing editor offered by the meta-modeling technology or directly by the provided API. The
other two approaches involve creating a new FCDL concrete syntax or a completely new
domain-specific language with transformation to FCDL. This subsection discusses these
options and motivates our choice.

Direct Meta-Modeling using an Editor or API Most of the meta-modeling environ-
ments provide some tool support and API for creating models. EMF comes with a simple
generic tree-based editor capable of generating a more sophisticated and customizable
version for a concrete meta-model. In our case, the two main problems of using either of
these options is that the tree visualization is not appropriate for FCDL and directly work-
ing with the FCDL meta-models is not very convenient (cf. Figure 3.10 on page 52). To use
the EMF meta-modeling API is even less desirable since the level of abstraction at which
the models are described is the one of the programming language, i.e., Java.

Graphical or Textual Concrete Syntax Among different concrete syntaxes that exist,
graphical and textual are the two most common forms. In Chapter 3, an informal graph-
ical notation for FCDL was introduced. However, it is not formal enough for a complete
description (e.g. does not include information about data types). While it could be ex-
tended to cover the full FCDL specification, doing so only makes sense if it is accompanied
by a tool support to be used to create FCDL models. However, the effort of developing
a usable graphical editor is usually rather high6 in comparison to the effort of creating a
text editor.

A textual concrete syntax is defined by a grammar and it involves a compiler that
translates the text into the target meta-model instances. In MDE, this process is referred
to as Text-to-Model Transformation (T2M) and there exist several tools that can automatize it.
Examples of these tools in EMF include Xtext7, EMFText8, MontiCore [Krahn et al., 2010]
and TCS [Jouault et al., 2006]. They generate complete compilers including scoping and
linking9 support based on language grammars and meta-model definitions. In addition,
they are usually well integrated within the Eclipse IDE and provide rich editing support
including syntax highlighting, content assists, quick fixes and other features known from
modern development environments.

In our case, the problem with the T2M approach is that the grammar parser rules defin-
ing the mapping between the textual tokens and the modeling elements have to match the
target meta-model elements. This matching is usually defined using EBNF-like (Extended

6This of cause greatly depends on the meta-modeling environment. In case of Eclipse GEF (http://www.
eclipse.org/gef/), which is standard framework for EMF based graphical editors, a simple editor of only three
elements already consists of 65 files with nearly 5,000 lines of code [Kelly, 2004].

7http://www.eclipse.org/Xtext/
8http://www.emftext.org/index.php/EMFText
9They allow to specify cross-linking information directly in the grammar and thus next to parsers and lexers

can also generates additional facilities for linking model element references together.

95

http://www.eclipse.org/gef/
http://www.eclipse.org/gef/
http://www.eclipse.org/Xtext/
http://www.emftext.org/index.php/EMFText

. T A M E

Backus-Naur Form) expressions [ISO14977, 1996] with one symbol for each concept from
the abstract syntax. Therefore, the concrete syntax would be tied to the FCDL meta-model
and developers will have to define all the FCDL elements, just like in the case of EMF ed-
itors.

Domain-Specific Language The above mentioned limitation only appears when the con-
crete syntax has to map to an existing meta-model that is fixed and cannot (or should not)
be changed. To go around this issue, we define a new language with its own meta-model
that is separated from FCDL. While this involves additional effort, especially since we
also have to provide transformations between the two meta-models, it brings the maxi-
mum flexibility for the grammar definition. Moreover, this separation allows for creating
new concepts that are not and should not be part of the original meta-model. For exam-
ple, let us consider specifying behavior of an adaptive element, i.e., associating a concrete
implementation (e.g. a Java code) to an interaction contract (Section 4.2). The FCDL is
a technologically-agnostic modeling language and as such, it is not primarily concerned
with implementation details beyond the feedback control loop architectures. Additional
details such as the name of a Java class that implements a particular adaptive element
behavior can only be added using annotations (Section 3.3.8). With the new language,
however, we can provide support for the implementation specification directly in the lan-
guage. While this will make the language tied to a particular set of tools (e.g. the code
generator), it offers substantial gains in productivity.

5.1.2 FCDL in a Nutshell: Modeling FCL Architectures

This and the next subsections present the main FCDL constructs. Details about the lan-
guage abstract and concrete syntaxes are provided in Appendix B.1 and B.2 respectively.
For better illustration, the language features are demonstrated using an excerpt of the
QOSControl taken from the running example shown in Figure 5.2.

QOSControl

utilController
: UtilizationController

in contentTreein input in utilization

out contentTree

: PeriodTrigger

out output

initialPeriod=10s

period setPeriod

provided out period provided in setPeriod

...

Figure 5.2: An excerpt of the QOSControl composite used for the FCDL illustration

Overview FCDL is a domain-specific modeling language for defining complete FCDL
models including adaptive element implementations in a convenient and expressive tex-

96

5.1. Modeling Support

tual form. Essentially, an FCDL file consists of one or more adaptive elements or com-
posite type definitions. The language is close to Java and it uses some of the Java concepts
such as modularization and type system as well as naming convention [Sun, 1997]. This
should help developers familiar with Java to quickly understand the notation. Moreover,
there is a close interoperability with Java10 for the adaptive element behavior specification
that will be detailed later in sections 5.1.3 and 5.1.4.

Organization FCDL is not concerned with modularization and cross-model element ref-
erences11. All adaptive element types are contained under the same control system model
instance. FCDL introduces a concept of modularization whereby feedback control archi-
tectures can be organized in multiple files. It uses the Java package mechanism to organize
adaptive elements into different namespaces. The import mechanism also mimics the one
of Java. For example, following declarations
package demo.webserver

import fcdl.math.*
import fcdl.sys.NewSystemProcessNotifier

allow to directly use any adaptive element within the demo.webserver and fcdl.math
packages as well as NewSystemProcessNotifier. Any other adaptive element will have to
be referred to using its fully qualified name.

Data Types Besides importing existing adaptive elements, an import statement can also
be used to import just about any other Java class. These classes can then be referred to in
the data type definitions (Section 3.3.2). The FCDL follows the same type conformance
rules as Java. With an implicit import of java.lang.*, it makes all the standard Java data
types available straight in the FCDL. The language also differentiate class types from
primitive types (e.g. int and java.lang.Integer). The FCDL compiler is responsible
for creating the necessary concrete data type instances in the final FCDL model.

The FCDL language does not provide any constructs for defining new data types.
This means that all data types must be imported and thus if a new data type is needed
it has to be defined a priori in Java12. The main reason is that adding a straight-forward
data type definition support that is interoperable with Java will significantly increase the
language size. It will have to include constructs for extending existing Java types, im-
plementing interfaces, access modifiers and defining and overriding methods eventually
turning FCDL into a GPL. However, having a lightweight data type system definition
that allows to only construct a simple record-like structures or physical units might be
eventually beneficial and it is one of the subject of our further work.

Adaptive Element Types The architecture description consists primarily in adaptive el-
ement types definitions. The following code shows an example of how to create the Pe-

10More precisely with any Java Virtual Machine language that compiles to Java classes.
11The EMF implementation of FCDL actually supports cross-model referencing because it inherits this mech-

anism from EMF, however, there is no first-class support for it directly in the meta-model itself.
12Or any other language that compiles to Java classes

97

. T A M E

riodicTrigger processor from the running scenario. The full FCDL definition of the
scenario is listed in appendix C.1 (line 94-143).

1 package demo.webserver
2

3 active processor PeriodicTrigger<T> {
4 push in port output: T
5 pull in port input: T
6 self port selfport: long
7

8 provided sensor period: Duration
9 provided effector setPeriod: Duration

10

11 property initialPeriod: Duration = 10.seconds
12

13 // ...
14 }

Next to a package declaration, this listing defines a new adaptive element type, an
active processor called PeriodicTrigger (line 3). At the same time it also defines a data
type parameter T. The symbol T can be then used inside the adaptive element definition
for any data type specification. It is used on lines 4 and 5 that respectively declare the
push output and pull input ports. This makes it a polymorphic adaptive element since it
can be used with varying data types. There can be any number of data type parameters
(separated by a comma). Furthermore, just like Java, FCDL also supports type bounds
using the extends keyword.

Because, it is an active processor, it implicitly defines a self port (selfport). We only
need to redefine it (line 6) if we need to: change the default name (selfport)13 or specify
its data type which is void by default. Lines 8 and 9 define reflection capabilities of this
adaptive element. That includes a provided sensor period and a provided effector set-
Period, both using Duration data type (a finite time duration defined in the fcdl.lang
package that is implicitly imported). Finally, on line 11, a required property initialPe-
riod of the same data type is declared together with a default value of 10 seconds.

The next example shows the FCDL code for the UtilizationController controller,
defining two ports, three properties and no data type parameters.

1 controller UtilizationController {
2 in push port utilization: double
3 out push port contentTree: double
4

5 property k: double
6 property targetUtilization: double // U^*
7 property M: int
8

9 //...
10 }

Intuitively, other two adaptive element roles are created by using corresponding key-
words: sensor and effector.

13The reason why it called selfport and not just self as it was defined in Definition 5 is that self is internally
used by Xbase to refer to containing scope of lambda expressions.

98

5.1. Modeling Support

Composition Section 3.3.4 presented the FCDL support for composing multiple related
adaptive elements together in order to form higher-level structures. The following listing
shows an example of a composite definition in FCDL. Concretely, it shows an excerpt
of the QOSControl composite definition from Figure 5.2 featuring the two above defined
adaptive element types.

1 composite QOSControl {
2 // composite ports
3 out push port contentTree: double
4

5 // composite provided ports
6 provided sensor period: Duration
7 provided effector setPeriod: Duration
8

9 // composite properties
10 property k: double
11 property targetUtilization: double
12 property M: int
13 // ...
14

15 feature scheduler = new PeriodicTrigger<Double> {
16 // redefines the default value of initialPeriod
17 initialPeriod = 30.seconds
18 }
19

20 feature utilController = new UtilizationController {
21 // references the composite properties
22 k = this.k
23 targetUtilization = this.targetUtilization
24 M = this.M
25 }
26 // ...
27

28 // create a communication channel
29 connect scheduler.output to utilController.utilization
30 // ...
31

32 // port promotions
33 promote scheduler.period
34 promote scheduler.setPeriod
35 promote utilController.contentTree
36 // ...
37 }

Since composites are also adaptive elements, they can also declare ports (line 3), pro-
vided sensors and effectors (line 6 and 7) and properties (lines 10-12). Additionally to
adaptive elements, composites define an assembly of other adaptive elements. On line 15
a new instance of PeriodicTrigger named scheduler is created, including a data type
argument specification for the PeriodicTrigger data type parameter T.

Instead of specifying concrete data types, we could make the composite polymorphic
by adding a data type parameter that would now serve as the data type argument for the
instantiation. For example

composite QOSControl<T> {
// ...
feature scheduler = new PeriodicTrigger<T> { /* ... */ }

99

. T A M E

// ...
}

The body of an instantiation (the code between the curly braces) gives an opportunity
to specify values of the element properties. Similarly, on line 20, a new instance util-
Controller of the UtilizationController is created. For the property specification, an
implicit this reference is used to refer to the properties defined in the surrounding com-
posite. Finally, line 29 connects the scheduler output port to the input of the utilCon-
troller and lines 33-35 promote the remaining ports to the corresponding ports defined
in the composite.

Distribution The new operator creates a new instance, a new contained feature. In the
case of distributed adaptive element, we might instead need to only reference a remotely
deployed element (cf. Section 3.3.6). In FCDL, it is supported by the ref keyword.

1 // deployed at host remote-apache
2 composite Apache {
3 feature apache = new ApacheWebServer {
4 // ...
5 }
6 feature control = ref ApacheQOS.control @ "akka://remote-main/user/ApacheQOS/control"
7 }
8

9 // deployed at host remote-main
10 composite ApacheQOS {
11 feature control = new QOSControl {
12 // ...
13 }
14 feature apache = ref Apache.apache @ "akka://remote-apache/user/Apache/apache"
15 // ...
16 }

In this example, we have two remotely deployed composites that reference features
from one another (cf. Figure 3.14), lines 6 and 14. The URI indicating the remote features
locations are implementation specific. In the listing above we use the Akka URIs since the
A domain framework is based on Akka (cf. Section 5.2.2).

Interaction Contracts The remaining part of the adaptive element structural definition
is the specification of its interaction contract(s). This is done by including one or more act
keyword(s) that define basic interaction contract(s).

1 active processor PeriodicTrigger<T> {
2 push in port output: T
3 pull in port input: T
4 self port selfport: long
5

6 provided sensor period: Duration
7 provided effector setPeriod: Duration
8 // ...
9

10 act activate(selfport; input; output?)
11 act onSetPeriod(setPeriod; ; period?)
12 }

100

5.1. Modeling Support

The corresponding interaction contract definition is between lines 10 and 11 declares
two interaction contracts:

activate (line 10) = ⟨ self ;⇓ (input); ⇑ (output?) ⟩
onSetPeriod (line 11) = ⟨ ⇑ (setPeriod); ∅; ⇑ (period?) ⟩

The definition in FCDL has the following structure: act name (A,R,E)[?]. After the
act keyword, the name assigns a name to the interaction contract that will be used for
the activation method name and the A,R,E define respectively the ports involved in the
activation, data requirements and data emission parts of the contract. Appending `?''
after an emission port makes the emission optional. Similarly, `?' following the interaction
contract specification denotes an optional contract. The ports are separated by commas
and in the case of input disjunction for the activation condition by lowercase letter `v'
(input1 v ... v inputn).

Annotations Similarly to FCDL, FCDL supports annotations to include additional de-
tails to modeling elements. The annotation are defined in Java-like syntax and the argu-
ments values are always string literals. For example, marking ApacheQOS composite as
main is expressed using the @Main annotations as:

@Main(name="actress")
composite ApacheQOS { /* ... */ }

Annotations can be attached to all FCDL declarations (to an adaptive element, a port, a
property, an interaction contract, a connection, a promotion and a feature).

5.1.3 FCDL in a Nutshell: Adaptive Element Implementation

The previous subsection has reviewed the FCDL concepts related to the structural de-
scription of the elements composing feedback control loop architectures. From such a
description it is already possible to synthesize a partial implementation of the adaptive
elements. What is missing, is the adaptive elements behavior, i.e., the implementation of
the interaction contracts activation methods. There is no restriction to what an adaptive
element behavior should be. For example, the elements from the running scenario (cf.
Section 3.2 and 3.3.1) use mostly arithmetic expressions, but the web server touchpoints
also use IO and other libraries such as regular expression for the log file parsing.

One way to specify a behavior is thus to directly modify or extend the generated code in
a GPL like Java. However, this comes at the price of having a closely related information
in two different places maintained at two different levels of abstraction in two different
languages. Therefore, in order to provide a more integrated approach, we extend the
FCDL language with expressions that can be used to specify adaptive element behavior
directly in the FCDL files.

The support is based on an expression language called Xbase14 that conceptually and
syntactically resembles the Java language. It is a statically typed expression language that

14http://www.eclipse.org/Xtext/documentation.html#xbaseLanguageRef_Introduction

101

http://www.eclipse.org/Xtext/documentation.html#xbaseLanguageRef_Introduction

. T A M E

additionally includes support for some more advanced concepts such as lambda expres-
sions, type inference and operator overloading. Developed as a part of the Xtext frame-
work, it can easily be mixed with other Xtext languages.

Xbase expressions are particularly convenient for implementing adaptive elements
that are based on mathematical equations. For example, the UtilizationController is
responsible for computing severity of adaptations, G, using equation (3.2):

E = U∗ − U

G = G+ kE

where U∗ and U are respectively the target and the current system utilization (cf. Sec-
tion 3.2). The Xbase implementation allows one to directly express this equation in the
FCDL:

1 controller UtilizationController {
2 // ...
3

4 // beginning of Xbase implementation
5 implementation xbase {
6 var G = M
7

8 // implementation of the
9 // act activate(utilization;;contentTree)

10 // interaction contract
11 act activate {
12 // computes the error
13 val E = targetUtilization - utilization
14

15 // computes new extend of adaptation
16 G = G + k * E
17

18 // correct bounds
19 if (G < 0) G = 0
20 if (G > M) G = M
21

22 // returns the result
23 G
24 }
25 }

The code in the Xbase implementation can use any Java library. It is thus possible
to implement more complex formulas and algorithms leveraging Java libraries for linear
algebra 15, statistics16 and the like. It can also be used for technical elements such as Pe-
riodicTrigger whose implementation is shown below in Listing 5.1.

1 implementation xbase {
2

3 // variable definitions
4 var currentPeriod = initialPeriod // reference a property
5 var task: Cancellable
6

7 // life-cycle callbacks
8 def init {

15http://la4j.org/
16http://commons.apache.org/proper/commons-math/

102

http://la4j.org/
http://commons.apache.org/proper/commons-math/

5.1. Modeling Support

9 // start the timer task
10 reschedule
11 }
12

13 def destroy {
14 // cancel the timer task
15 task.cancel
16 }
17

18 // interaction contract activation method implementations
19 act activate {
20 log.info("Activate at "+selfport.get)
21

22 // get data from the input port
23 val data = input.get
24 // check for nulls and eventually output
25 if (data != null) output.put(data)
26 else log.info("No data available on the input port")
27 }
28

29 act onSetPeriod {
30 // checks if the setPeriod - a value pushed through the provided
31 // sensor is different than the current one
32 if (setPeriod != currentPeriod) {
33 // if so - update, reschedule and notify through provided sensor
34 currentPeriod = setPeriod
35 reschedule()
36 period.put(currentPeriod)
37 }
38 }
39

40 // auxiliary methods
41 def reschedule {
42 // cancel if it has been already scheduled
43 if (task != null && !task.isCancelled) task.cancel
44

45 // scheduler is one of the service provided by the domain framework
46 // we schedule a closure with 2 seconds delay and currentPeriod as period
47 task = context.scheduler.schedule(2.seconds, currentPeriod) [|
48 // closures are are denoted by square brackets
49 // once executed it pushes current time to the selfport
50 // selfport is the only port, that is available in this scope
51 selfport.put(System::currentTimeMillis)
52]
53 }
54 }
55 }

Listing 5.1: Xbase implementation of PeriodicTrigger

The Xbase block starts at line 12 indicated by the implementation xbase keywords. It
consists of four parts:
− declarations and definitions of any number of variables (lines 4 and 5),
− life-cycle callbacks for element's initialization and destruction (lines 8-16),
− interaction contract implementations (lines 19-38), and
− any number of auxiliary methods (lines 41-54).

103

. T A M E

During the code generation, Xbase code is compiled into regular Java code (cf. Sec-
tion 5.2.1). For example Listings C.2 and C.3 in the appendix show the complete Java
code inferred from the above PeriodicTrigger definition.

Xbase provides a convenient way of specifying adaptive elements implementation di-
rectly in FCDL, however, it might not always be the most suitable option. In the next
section we show how a custom implementation based on Java or Scala can be used in-
stead.

Higher-Order Adaptive Elements There is another advantage of using Xbase as it en-
ables creating higher-order adaptive elements by using lambda properties. For example, Sec-
tion 3.3.5 showed an FCDL schema of dynamic deployment of the running example (cf.
Figure 3.12). It involved a sensor broadcasting a notification every time a new system pro-
cess has been started by an operating system. This notification was piped into an Apache-
ProcessFilter to filter out non-Apache processes. Let us now imagine that we want to
reuse this FCDL model with a different web server, e.g., Lighttpd. We could reuse all
the adaptive elements, but we would have to create a new process filter. Instead of the
ApacheProcessFilter we would have to implement a LighttpdProcessFilter that es-
sentially just replicates the logic of the ApacheProcessFilter but use lighttpd instead of
httpd in the filter predicate. Using Xbase support for higher-order functions, we can ab-
stract the system process filtering by defining a property that acts as a predicate, i.e., a
function that takes a process information and returns either true or false depending on
whether the process should be pushed further or skipped. Concretely, in FCDL it can
be achieved as follows:

processor ProcessFilter {
// ...
// one parameter predicate
// it takes a ProcInfo as a parameter and returns a boolean
property filter: (ProcInfo)=>boolean
// ...

}

composite ApacheQOSDeployer {
// ...
feature apacheFilter = new ProcessFilter {
// define the filter predicate for Apache
filter = [proc | proc.name == "httpd"]

}
}

composite LighttpdQOSDeployer {
// ...
feature lighttpdFilter = new ProcessFilter {
// define the filter predicate for Lighttpd
filter = [proc | proc.name == "lighttpd"]

}
}

Furthermore, we can use the data type parameters to create a polymorphic one parameter
predicate processor:

104

5.1. Modeling Support

processor ItemFilter<T> {
// ...
// one parameter polymorphic predicate
property filter: (T)=>boolean
// ...

}

composite ApacheQOSDeployer {
// ...
feature apacheFilter = new ItemFilter<ProcInfo> {
// define the filter predicate for Apache
filter = [proc | proc.name == "httpd"]

}
}

This support allows to define more generic adaptive elements further increasing possibil-
ity of their reuse.

5.1.4 FCDL to JVM Model Transformation

Xbase is a language library that can be embedded into other Xtext languages. In order
for this embedding to work, domain-specific concepts of the host language have to be
translated into Xbase concepts, i.e., JVM model elements such as Java classes, fields and
methods. By providing this mapping Xbase can take responsibility of proper expressions
scoping, method invocation resolutions and type conformance checking. Essentially, this
translation is a model-to-model transformation between FCDL abstract syntax and the
Xbase JVM model. Concretely, the transformation involves creating an adaptive element
delegate and adaptive element act classes as they were described in Sections 4.1.1 and 4.2.8
respectively. At this point we are only interested in the class structure so element members
(e.g., ports and properties) can be referenced and type checked. However, this transfor-
mation serves as a basis for the code generator that additionally synthesizes the imple-
mentation of the inferred methods (cf. Section 5.2.1).

Following is a high level overview of the JVM inference. This mapping is based on the
semantics defined in the previous chapter (Section 4.1 and 4.2) using the types presented
in Figure 4.1 and 4.13.

Adaptive Element Delegate Inference An adaptive element delegate is a Java class that
extends from the abstract AdaptiveElementDelegate class (cf. Figure 4.1). The inference
rules include:
− data type parameter map into the Java class type parameters,
− properties map into instance variables and constructor parameters,
− ports map into instance variables,

Adaptive Element Acts Inference An adaptive element act is a Java class whose infer-
ence rules include:
− data type parameters map into the Java class type parameters,
− properties map into instance variables and constructor parameters,

105

. T A M E

− Xbase variables map into instance variables,
− selfport maps into an instance variable,
− life-cycle methods, interaction contract acts and any other auxiliary methods map into

instance methods with appropriate return type and parameter list.

Example Figure 5.3 shows a concrete example of the JVM model inference for the Pe-
riodicTrigger. The actual code that is synthesized by the code generator is listed in
Appendix C.2 for the adaptive element delegate and in Appendix C.3 for the adaptive
element act.

active processor PeriodicTrigger<T> {
 push in port output: T
 pull in port input: T
 port selfport: long

 provided sensor period: Duration
 provided effector setPeriod: Duration

 property initialPeriod: Duration

 act activate(selfport; input; output?)
 act onSetPeriod(setPeriod; ; period?)

 implementation xbase {
 var currentPeriod = initialPeriod
 var task: Cancellable

 def init {
 // ...
 }
 def destroy {
 // ...
 }

 act activate {
 // ...
 }
 act onSetPeriod {
 // ...
 }

 def reschedule {
 // ...
 }
 }
}

AdaptiveElementDelegate

-output : InPushPort<T>
-input : InPullPort<T>
-selfport : SelfPort<Long>
-period : OutPushPort<Duration>
-setPeriod : InPushPort<Duration>
-initialPeriod : Duration
+PeriodicTrigger(context : DirectorContext, initialPeriod : Duration)
+init()
+preActivate()
+activate()
+destroy()

PeriodicTrigger
T

-initialPeriod : Duration
-currentPeriod : Duration
-task : Cancellable
-selfport : Push<Long>
+PeriodicTriggerActs(context : DirectorContext, initialPeriod : Duration)
+init()
+destroy()
+activate(selfport : long, input : Pull<T>, output : Push<T>)
+onSetPeriod(setPeriod : Duration, period : Push<Duration>)
+reschedule()

PeriodicTriggerActs
T

_act_act

Figure 5.3: FCDL to JVM model transformation

5.1.5 FCDL to FCDL Transformation

The final missing part is the transformation that maps FCDL models into FCDL models
(FCDL types package). By looking at both meta-models (FCDL in Appendix A.2 and
FCDL in Appendix B.1), the transformation is rather intuitive and the concrete list of rules
is given in Appendix B.3. The main issue in the relation between FCDL and FCDL model
elements are the data types.

Data Types A data type in FCDL model is used for two purposes: type conformance
checking and code generation. In FCDL a data type is represented using an Xbase Jvm-
TypeReference element which references some Java type. Additionally, Xbase provides
a service that checks type conformance of two JvmTypeReferences. Using this service
significantly simplifies the implementation of the data type conformance verifier (cf. Sec-
tion 3.3.2). Therefore, while converting the JvmTypeReference into ConcreteDataType,

106

5.2. Code Generation Support

which is used for data type representation in FCDL, we use the EMF adapters (cf. [Stein-
berg et al., 2008, Section 16.2]) to store the original reference to JvmTypeReference so it
can be used later by the type checker. For the name property of the ConcreteDataType a
fully qualified Java class name of the original JvmTypeReference is used. The very same
applies for JvmTypeParameter that is used to represent data type parameter in FCDL.

5.2 Code Generation Support

The A modeling environment provides a code generation support that synthesizes
system implementation from FCDL models. Figure 5.4 shows a high level overview of its
components and artifacts.

Modeling Support

FCDL
model

JVM
model

Code Generation Support

Java
sourcesCode generator

Model-to-Text
transformation

Akka
framework

uses

ACTRESS
Framework

uses

Artifact Actress
component

External library
or tool

Figure 5.4: Overview of the A code generation support

Essentially, it consists of model-to-text transformations that take an FCDL model to-
gether with an inferred JVM model (cf. Section 5.1.4) and output Java source files. The
transformation is model-aware17 [Fowler, 2010] and the generated code is using the A-
 domain framework. The framework provides necessary abstractions for seamless
mapping of FCDL adaptive elements and composites into lower-level actors. It also con-
stitutes of a runtime environment for executing these actors, essentially implementing the
semantic rules described in Chapter 4. Code generation for a particular framework makes
the code generator tightly coupled with it. On the other hand, the more abstractions the
framework provides the less work is done in the code generation and the resulting code
is more readable and easier to test and debug. Furthermore, it only interfaces with the
framework API and thus multiple implementations can be used. It is important to stress
here that while this section illustrates the use of a particular technological stack for the
implementation, i.e., Java and Akka18, it presents just one possibility. For example, we
could equally use C++ and libcppa19 as FCDL is a technologically agnostic model. This is
further discussed in Section 6.2.1 where an alternative FCDL implementation is presented.

17Generated code has an explicit simulacrum of the model semantics usually based on a domain framework.
18http://akka.io
19https://github.com/Neverlord/libcppa

107

http://akka.io
https://github.com/Neverlord/libcppa

. T A M E

We begin this section presenting the code generator itself that will be followed by an
overview of the A framework.

5.2.1 Code Generator

Code generator translates FCDL model elements into source code artifacts that together
form the self-adaptive layer that controls the target system. It consists of an actor run-
time and a network of hierarchically composed actors. The top actor in this hierarchy
represents a main FCDL composite. For example, Figure 5.5 shows the actor hierarchy
representing the adaptive elements from the running scenario (cf. Figure 3.8) that will be
deployed in the A runtime.

ACTRESS Runtime

accessLogParser accessLog adaptor

apache control

requestCounter

responseSizeCounter

loadMonitor

utilization

scheduler utilController

ApacheQOS

actor

actor with
event listener

composite
actor

containment

message
passing

Figure 5.5: The hierarchy of the running example actors in the A runtime

Because the FCDL input model is already an actor-oriented model, the source code
transformation is rather straightforward as it does not need to build any other interme-
diate representation. Taking FCDL instances and the inferred JVM model, the following
artifacts are generated:

− For each non-composite adaptive element an adaptive element delegate class is generated.

− For each non-composite adaptive element either a complete or a ``skeleton'' implemen-
tation of adaptive element act class is generated based on whether Xbase was used.

− For each composite a composite delegate class is generated.

− For each main composite a composite launcher class is generated.

Following the generation gap pattern, the sources of FCDL projects are split in two
directories src-gen and src20.

The code generator emits Java code. There are two reasons for that. First, the code gen-
erator relies on the Xbase compiler to transform Xbase expressions into code and currently

20A concrete example of what is being generated for the running scenario is shown in Figure 5.10 on page 117.

108

5.2. Code Generation Support

it only supports Java. Second, despite the fact that we use Scala for A implementa-
tion and for code illustrations in this work, by generating Java code we potentially attract
a wider audience. Nevertheless, the domain framework has both Java and Scala API and
adaptive element skeletons can be implemented in either languages.

In the rest of this subsection we discuss the different generated artifacts.

Adaptive Element Delegate and Act In Section 5.1.4 we have described the process of
inferring the JVM model from FCDL elements. The exact same process is also used for
source code generation. The code generator creates the very same classes and addition-
ally synthesizes their implementations. Namely, for adaptive element delegates it emits
code for life-cycle methods (i.e., init, destroy, preActivate and activate) following the
semantic rules defined in Chapter 4, mainly in Section 4.1.5 and 4.2.8. A concrete example
of what is synthesized for the PeriodicTrigger delegate is shown in Listing C.2.

Essentially, the init and destroy methods are simply delegated to the adaptive el-
ement act class. The preActivate method represents a logical disjunction of activation
conditions of the adaptive element interaction contracts. The activate method follows
the contracts delegating to the appropriate methods defined in the corresponding adap-
tive element act class. This behavior is shown graphically below in Figure 5.6.

An implementation of adaptive elements act includes the init and destroy life-cycle
methods and the activation methods corresponding to interaction contracts. There are
two possibilities. Either, they were implemented using Xbase and thus the Xbase com-
piler generates the corresponding Java code, or no implementation was given in which
case an empty skeleton is generated. An example of the code generated from the Xbase
implementation of the PeriodicTrigger is shown in Listing C.3.

Custom Implementation With Xbase expressions the code generator can synthesize a
complete system. However, Xbase might not always be the most suitable language. For
some of the more complex touchpoints that need to interface with third-party libraries,
a direct implementation in Java or in Scala might be preferred21. The generated skeleton
class is therefore provided for a custom implementation using a GPL. As we have pointed
above, in order not to mix generated and user modified code the custom implementation
is separated from the generated one by inheritance and resides in a separate directory. We
use ActCustom suffix for the user-modifiable class.

Composites Delegate and Actor A composite is responsible for managing the features
it contains, i.e., for the features life-cycle, message forwarding over promoted ports and
port connections. It does not provide any particular behavior on its own and thus there
is no need to generate any adaptive element act class. Moreover, since all composites
behave the same, most of the implementation can be abstracted into a base superclass
in the domain framework (cf. Section 5.2.2 on page 110). The code generator therefore

21Xbase does not yet (as of version 2.4) support nested classes and implementation of interfaces with more
than one method

109

. T A M E

only needs to generate a code related to composite initialization where it iterates over the
composite structure to create contained features, look up remote feature references and
sets up their port connections and promotions. An example of a composite delegate for
UtilizationMonitor is shown in Listing C.5.

Composite Launcher The A code generator also generates support for launching
FCDL applications. For each main composite, the code generator emits a Java class with
the main method that initializes the A runtime and deploys the composite into it.
Such a launcher can be further modified by developer to properly configure the composite
and the actor runtime. An example of the generated launcher for ApacheQOS composite is
shown in Listing C.4.

5.2.2 The A Framework

The A domain framework is an implementation of the FCDL model of computation
(cf. Section 4.1) on the top of Akka. Concretely it provides an implementation of the
adaptive element director (cf. Section 4.1.1), the composite director and the Akka-based
runtime. The framework is implemented in Scala, but it also includes a Java API that is
used by the generated code.

Why Akka? Akka is a framework and a runtime for highly concurrent, distributed, and
fault tolerant actor-based applications on the JVM. In its core it supports location trans-
parency, and it provides two important message delivery guarantees: at-most-once de-
livery, and message ordering per sender–receiver pair. It is designed to be scalable and
lightweight (cf. Section 6.2.3) and it comes with both Java and Scala APIs.

Adaptive Element Director The adaptive element director is an Akka actor that is re-
sponsible for handling port connections, message communications and also for the asso-
ciated delegate life-cycle and interactions. All non-composite adaptive elements are using
the same director implementation.

Figure 5.6 shows a concrete example of an adaptive element director execution asso-
ciated to PeriodicTrigger. It follows the generic schema shown in the previous chapter
(cf. Figure 4.2), only this time it depicts a concrete implementation. There are 6 execu-
tions. The first two are related to the port connections, informing the director about the
targets of its ports using the CONN message. Next, an INIT message is sent to initialize the
actor. The CONN and INIT messages are sent from the composite that owns the instance
of this PeriodicTrigger. In this particular example it is the QOSControl composite (cf.
Figure 3.8). The executions 4 and 5 are examples of PUSH messages over the self port and
over the provided effector. The last message, KILL, is sent by the A runtime when
it is shutting down allowing the actor to gracefully terminate.

Composite Director Similarly to the adaptive element director, the composite director
is an Akka actor that is responsible for handling FCDL composites, i.e., managing life-

110

5.2. Code Generation Support

ActorSystem
(akka.actor)

AdaptiveElementDirector
(actress)

PeriodicTrigger
(demo.webserver)

PeriodicTriggerAct
(demo.webserver)

CONN("intput",utilizationRef,"utilization")

CONN("output",utilControllerRef,"utilization")

KILL()

PUSH("selfport",d)

destroy()

activate()
activate(d, inputPull, outputPush)

delegate _acts

preActivate()

enqueue("selfport",d)

PUSH("setPeriod",d)

activate()
setPeriod(d, periodPush)

preActivate()

enqueue("setPeriod",d)

1

2

3

4

5

6

UntypedActor
(akka.actor)

destroy()

init()
INIT()

init() attaching event
listener to a timer

<<references>>

Figure 5.6: Example of an adaptive element director execution

cycle of contained features (initialization and termination) and message forwarding over
promoted ports. Similarly to the case of adaptive elements, all composites are also using
the same director implementation that associates a concrete composite delegate which is
automatically synthesized by the code generator. A composite delegate is a specialized
version of the adaptive element delegate. As we have noted above, all composites have
the same behavior that only varies depending on the composite structure. Therefore, out
of the four life-cycle methods only the init method has to be generated. This is where
the composite structure gets exposed and features registered. The implementation of the
other methods is provided by the composite delegate super class. The init method is
further split into a number of dedicated methods that are responsible for the different
composite initialization tasks that involves following steps: (1.) creation of all contained
features, (2.) lookup of all referenced features, (3.) connection of features ports, (4.) setup
of promoted ports, and (5.) initialization of all contained features.
Because of the dynamic nature of the actor system we use that particular initialization
order to make sure that ports are connected before the adaptive elements are initialized.
This is to prevent active elements pushing or pulling data from disconnected ports.

Composite life-cycle consists of four states (cf. Figure 5.7):

− Started. The initial state of a newly started composite. In this state it answers to port
connection messages and waits for the INIT message which will move it to the next
state.

− Initializing. During initialization it consecutively executes the five initialization tasks

111

. T A M E

from the composite delegate. It waits for the all the featured adaptive elements to be
started or looked up and then it moves to the running state.

− Running. When running, the composite responds to push and pull requests, forward-
ing the messages to the appropriate endpoints of the promoted port connections. It
can also rewire ports and answer a KILL message by moving to the terminating phase.

− Terminating. The termination process simply sends KILL messages to all the contained
features.

start

end

Started

Running Terminating

Initializing

INIT()

KILL()

Figure 5.7: Composite director life-cycle

The A runtime The runtime support is realized as a thin wrapper over the Akka
actor system22. It configures the Akka with some default values related to message queues
priority settings and fault tolerance. It also registers a shutdown hook to gracefully termi-
nate the running adaptive elements, giving them the opportunity to execute the destroy
method.

5.3 Verification Support

Flawed self-adaptive software may cause serious damages23 and therefore they should
undertake a rigorous validation and verification process. One of the advantages of using
models for defining feedback control loop architectures is that it makes them amenable
for automated analysis and verification. Figure 5.4 shows a high level overview of the
verification support in A. It consists of two components that will be discussed in
this section: model consistency checking and external model verification.

5.3.1 Model Consistency Checking

Model consistency checking is concerned with determining whether models are consis-
tent according to their specifications [Kolovos et al., 2006]. These specifications are usually
expressed as constraints in the form of structural invariants, i.e., boolean expressions that

22http://doc.akka.io/docs/akka/2.2.0/general/actor-systems.html
23For example, in September 2010, Facebook faced an outage for more than two hours caused by feedback con-

trol system. According to facebook spokesman they had entered a feedback loop that did not allow the databases
to recover. http://edition.cnn.com/2010/TECH/social.media/09/24/facebook.outage/index.html

112

http://doc.akka.io/docs/akka/2.2.0/general/actor-systems.html
http://edition.cnn.com/2010/TECH/social.media/09/24/facebook.outage/index.html

5.3. Verification Support

Modeling Support

FCDL
model

Artifact Actress
component

External library
or tool

Verification Support

Promela model
generator

FCDL model
checker

SPIN
model checker

uses

Model-to-Model
transformation

Promela
model

Model consistency
checking

Figure 5.8: Overview of A validation and verification support

query model instances checking whether particular properties are satisfied. Model invari-
ants are commonly supported in EMF-based models by either Java through Eclipse Vali-
dation Framework24 or by more specialized languages such as Object Constraint Language
(OCL) [Object Management Group, 2012b] or Epsilon Validation Language (EOL) [Kolovos
et al., 2009].

Invariants are used in the FCDL meta-model for asserting the model well-formedness.
For example, definitions presented in Chapter 4 are implemented as model constraints.
Additionally, developers can define their own set of invariants for FCDL model instances.
Usually, they are used to identify architecture bad smells such as adaptive element over-
laps (e.g. an effector being orchestrated by multiple controllers). Using OCL, these in-
variants can be directly attached to the model as annotations and checked automatically
by the EMF validator. For example, we could attach an OCL25 annotation to LoadMonitor
element to ensure that the size and requests ports are connected to two different sources
(to prevent mistakenly connecting them to the same Accumulator for instance):

@OCL(invDifferentSource="
self.ports
->select(p | p.name = 'size' || p.name = 'requests') // select ports
->collect(p | p.connections) // select their connects
->collect(p | p.parent) // select owning instances
->asSet()->size() == 2 // there must be two different ones

")
processor LoadMonitor {

5.3.2 External Verification

The use of models and MDE techniques brings the possibility of external model veri-
fication. It is based on model transformations, whereby an input model (i.e. FCDL) is

24http://www.eclipse.org/modeling/emf/?project=validation
25The type of the self is AdaptiveElementInstance since the OCL annotation is attached to AdaptiveEle-

mentType that is instantiated to AdaptiveElementInstance and the attached expressions are evaluated for adap-
tive element instances.

113

http://www.eclipse.org/modeling/emf/?project=validation

. T A M E

transformed into some others, usually formal models. The transformed models are then
checked by some external model checking tools in order to verify that some desired prop-
erties hold. Concretely, we use this technique to verify assumptions about connectivity
and reachability properties using Promela and the SPIN model checker [Holzmann, 2003].

For example, we can check at design time which elements will be activated by data
emission of a given element. Since all the tools that are built on the top of this model
must support the same semantics, we can ensure that these properties hold across all the
generated artifacts. In the running scenario, for example, one might want to ensure that
the utilController will be activated when there is a new access log record. Using the
LTL formulae [Huth and Ryan, 2004] this invariant can be express as:

□ (accessLogParseractivate → (♢ utilControlleractivate))

The predicate variables accessLogParseractivate and utilControlleractivate relate to
the accessLogParser and utilController elements and are true when the respective ac-
tivate methods (activate) are executed. This expression means that: ``always (□) when
the accessLogParser activate interaction contract is executed, then the utilController
activate interaction contract will eventually (♢) be executed as well.'' These properties
can be easily verified by the SPIN model checker. SPIN takes a model of the system de-
scribed in a Promela modeling language. It will try to find a counter example in which the
negated LTL formulae holds proving the corresponding stack trace. The Promela model
can be generated from our architecture model simply by mapping the element interaction
contracts and message flow into the corresponding Promela concepts. For example, the
accessLogParser which is an instance of AccessLogParser whose interaction contract is
⟨ ⇑ (lines); ∅; ⇑ (requests, size) ⟩ is translated into Promela code shown in Listing 5.2.

1 // act activate(lines; ; size, requests)
2 #define accessLogParser_activate (accessLogParser@act_activate)
3

4 // ports
5 chan accessLogParser_port_lines = [1] of { mtype };
6 chan accessLogParser_port_size = [1] of { mtype };
7 chan accessLogParser_port_requests = [1] of { mtype };
8

9 active proctype accessLogParser() {
10 // which interaction has been executed
11 byte act = 0;
12

13 // infinite process
14 end:
15

16 // waiting for activation
17 waiting:
18 if
19 // act activate(lines; ; size, requests)
20 :: accessLogParser_port_lines ? PUSH -> act = 1;
21 fi;
22

23 // element activations
24 executing:
25 if
26 // act activate(lines; ; size, requests)

114

5.3. Verification Support

27 :: act == 1 ->
28 act_activate:
29 accessLogParser_port_size ! PUSH;
30 accessLogParser_port_requests ! PUSH;
31 fi;
32

33 act = 0;
34 goto waiting;
35 }

Listing 5.2: Example of the generated Promela code for accessLogParser

The transformation between FCDL and Promela is driven by adaptive elements inter-
action contracts (cf. Section 4.2) and by the model of computation (cf. Section 4.1). The
process starts with a main composite. Each element instance (the transformation is work-
ing on an instance level) is mapped into an active Promela process and each port instance
into a buffered channel. Additionally, there are channels for all provided sensors that
allow their containing elements to simulate propagation of state changes. The communi-
cations over these channels follow the adaptive elements interaction contracts.

Based on the notion of interaction contracts, a similar verification support is also pre-
sented in the work of Cassou et al. [Cassou et al., 2011].

115

. T A M E

5.4 Integrated Development with A

So far we have presented the A components individually. In this section we will put
them together and discuss their integration inside the Eclipse IDE and how they cover the
whole process of self-adaptive software system integration.

The modeling environment is built on the top of the Eclipse platform and it integrates
with the Eclipse IDE. It leverages from Eclipse eco-system to covers the main tasks re-
lated to development of FCDL-based self-adaptation inside a unified development envi-
ronment (cf. Figure 5.9):

FCDL
model Code generation

Source
code

Design Reification

Execution and
Deployment

developer

creates modifies

generates

uses

uses

uses

Testing
Test
codecreates

uses

Promela
model

creates

Verification

...

Figure 5.9: The main tasks and artifacts involved in the development process with A

− Design. For designing feedback control architectures using FCDL we provide the FCDL
language with the Xtext based programming support (cf. Section 5.1). Figure 5.10
shows a screenshot of the FCDL editor in action.

− Verification. A developer can provide his own set of FCDL structural invariants in a
variety of languages including OCL, Java or Scala. These languages provide a solid
Eclipse integration and can be directly edited and executed from within Eclipse. Sim-
ilarly, generated Promela models can also be directly reviewed and executed inside
Eclipse through either EpiSpin26 or EP4S27 plug-ins.

− Code Generation. Every time a user saves an edited FCDL file, the A code gener-
ator (cf. Section 5.2) generates all corresponding sources. They can be inspected using
in the regular Eclipse Java editor.

− Reification. The developer has to provide custom implementation of adaptive elements
that do not use Xbase expressions. The advantage of Eclipse is that one can easily mix
multitude of languages inside one project inside the same development environment.
Regardless of what programming language the developer chooses, the IDE allows to
mix them providing a comparable editing experience and interconnection between
26http://epispin.ewi.tudelft.nl/
27http://matrix.uni-mb.si/en/science/tools/eclipse-plug-in-for-spin/

116

http://epispin.ewi.tudelft.nl/
http://matrix.uni-mb.si/en/science/tools/eclipse-plug-in-for-spin/

5.5. Summary

Figure 5.10: The A modeling environment

them (e.g. one can easily navigate and debug across classes written in different lan-
guages). This support is possible since all languages in the end share the same JVM
model.

− Execution and Deployment. The code generator creates Java launchers for the FCDL main
composites and thus they can be launched directly from within Eclipse. Thanks to JSR
4528 (debugging support for other languages), Xtext leverages from the Eclipse Java
Debugger and allows to directly debug the Xbase expression that are embedded inside
domain-specific languages. For deployment, currently the support relies on the Eclipse
ability to export executable JAR files from a project.

− Testing. Since the generated code is a plain Java code it can be simply tested using
standard JUnit tests leveraging from Eclipse JUnit support for test launching.

5.5 Summary

This chapter concludes the first part of this work that is about self-adaptive software sys-
tems integration. Concretely, the chapter has introduced the A modeling environ-
ment and provided a detailed discussion about its support for modeling, code genera-
tion and verification. For the modeling support, it presented FCDL, a domain-specific

28http://jcp.org/en/jsr/detail?id=45

117

http://jcp.org/en/jsr/detail?id=45

. T A M E

language for defining FCDL architectures including adaptive elements implementation
using the Xbase expression language. We then discussed a code generation and the actor-
based execution environment followed by the support for FCDL verification. Finally,
putting the individual A parts together we have discussed the integrated develop-
ment capabilities and the integration of A modeling environment into the Eclipse
IDE.

Essentially, A consists in a series of model manipulations taking models as in-
puts and producing other models or text artifacts, or asserting models consistency. In
the next part we are going to discuss model manipulations and detail the particular tech-
niques we used for the A implementation.

118

CHAPTER 6
Evaluation

This chapter presents the evaluation of the FCDL domain-specific modeling language and
the A modeling environment. It is organized into three parts. First we complement
the illustration of FCDL on two more case studies based on real-world adaption scenarios.
Next, we discuss the first goal of this work related to integration of self-adaptive mecha-
nisms into software systems, assessing the suitability of FCDL and A.

6.1 Experimental Case Studies

Throughout this work we have used the QoS management control scenario as a running
example to illustrate our approach (cf. Section 3.2). In this section we complement the
illustration with two additional case studies taken from the domain of High-Throughput
Computing (HTC). The objective is to provide some additional evidence about the over-
all feasibility of our approach and a concrete demonstration about the effort required to
implement real-world adaptation scenarios with some quantitative evaluation. We aim
to demonstrate reuse of adaptive elements across multiple scenarios, hierarchal organi-
zation of FCL, and remote distribution of adaptive elements. To achieve this objective,
for each case study, we present an end-to-end implementation1 including the scenario
overview, the design of the adaptation engine, feedback control architecture and experi-
mental results accompanied with a discussion.

We start by motivating the chosen case studies and introducing the HTC context. Next,
we present a case study addressing overload control in a local batch system which is then
extended to cover distributed job submissions.

6.1.1 Why HTC Case Studies?

Context and Motivation High-Throughput Computing (HTC) serves a vital role for re-
searches and engineers by providing them with large amounts of processing power over

1The supporting material, e.g. code and interaction contracts specification is provided in Appendix D.

119

. E

long periods of time exploiting existing computing resources on the network [Thain et al.,
2005]. However, the increasing demand and heterogeneity of tasks to be carried out, and
the soaring scale of these distributed environments, make their operation rather difficult
and tedious. The practice demonstrates that the human administration cost for HTC in-
frastructures is high, and end-users are not yet completely shielded from the system het-
erogeneity and faults [Lingrand et al., 2009, Ferreira da Silva et al., 2012]. Acknowledging
the fact that these systems can hardly achieve complete reliability and that they can no
longer be controlled statically, new operation modes have to be implemented in order to
make them more resilient and dynamically adaptable [Collet et al., 2010].

The following two scenarios address these problems by proposing autonomic opera-
tion modes in which the clients adjust their runtime behavior accordingly to the observed
state of the environment. Concretely, we consider an HTC environment for executing sci-
entific workflows using the HTCondor2 infrastructure [Thain et al., 2005]. HTCondor is a
well established distributed batch computing system that is being used extensively in both
academia and industry. It aims at providing reliable and maintainable high-throughput
environments, delivering capacity over long periods of time. The two case studies are
motivated by the need to concurrently execute large workflows without overloading the
system. In the first scenario we only consider a local job queue and in the second we
extend it to use distributed queues.

Including the running scenario (cf. Section 3.2), all three case studies are based on a
parametric adaptation in the area of client-sever computing. The reason for this is that
such cases represent the main adaptation scenarios [Kephart, 2011, Patikirikorala et al.,
2012]3.

Alternatives For evaluating the Rainbow framework (cf. Section 2.2.2), Cheng et al. de-
veloped the Znn.com benchmark [Cheng et al., 2009b]. While this is a well documented,
publicly available benchmark for self-adaptive software systems, we have three reasons
for not including it in this work: (1) this work has been developed in a context of the SALTY
project (properly introduced in Section 6.2.1) which focuses on distributed computing in-
frastructures, (2) the possibilities for adaptation in Znn.com are restricted to a parameter-
based adaptation of the Apache configuration file and Apache restarting [Tamura et al.,
2013]; our running example has already shown a very similar adaptation. (3) Znn.com
is an imaginary system, while HTCondor is a real system used by many4. Nevertheless,
providing a FCDL implementation of Znn.com is part of our short-term further work.

Next to introducing Znn.com, Cheng et al. also enumerated a number of requirements
that a self-adaptive software benchmark should satisfy. According to the authors: ``a use-
ful benchmark system is relevant, accessible, dynamically observable and changeable, and versatile;

2The HTCondor software was known as Condor from 1988 until its name changed in 2012.
3More than 50% of 158 papers surveyed by Patikirikorala [Patikirikorala et al., 2012] are in the middleware

/ data centers domain and more than 40% are concerned with either response time or throughput performance
variables

4http://research.cs.wisc.edu/htcondor/map/

120

http://research.cs.wisc.edu/htcondor/map/

6.1. Experimental Case Studies

supports alternative adaptive operations and multiple configurations; facilitates quality trade-offs;
and can be compared via a common metric''.

The chosen case studies are addressing a real-world problem of a scheduler overload
in an open-source widely used distributed computing infrastructure, HTCondor. The sys-
tem provides a number of command line utilities to be observed and modified. It contains
a wide range of configuration options allowing for various self-adaptive approaches with
different trade-offs and configuration paths. Therefore, we believe that the selected case
studies provide relevant adaptation scenarios for demonstrating our approach. Moreover,
they could serve as the base for developing an alternative to Znn.com featuring a real sys-
tem that has potentially more to offer in the sense of possibilities for self-adaptations.

6.1.2 Case Study 1: HTCondor Local Job Submission Overload Control

Scenario Overview In the HTCondor environment, the default job meta-scheduler that
carries out workflow execution is DAGMan. In DAGMan a workflow is defined as a di-
rected acyclic graph where the vertices represent tasks, defined as standard HTCondor
jobs, and edges represent the dependencies among them thus specifying the execution
order. DAGMan takes a workflow description and continuously submits the ready to
be submitted jobs into a local scheduler. This scheduler, called schedd, is responsible
for managing a queue of user submitted jobs and for mapping these jobs onto a set of
resources where the actual execution is performed. Figure 6.1 shows one of the usual
condor set-up [Bradley et al., 2011].

HTCondor Client Host

schedd

DAGMan 1

DAGMan 2

DAGMan N

User Interface

Submit
workflows

...

Executes

HTCondor cluster
of worker nodes

Users

Spaw
ns

Subm
it jobs

Figure 6.1: Overview of the HTCondor local overload control scenario.

It consists of a client host that provides an interface (e.g. a web application) allowing
users to submit workflows. Each workflow submission spawns a new DAGMan process
which submits workflow jobs into the local schedd. By default schedd accepts all valid
submission requests regardless of the current state of the system. Since the work schedd
has to perform is proportional to the number of jobs it controls, by executing several large
workflows it can become overloaded. This in turn can result in an overall throughput
degradation. There is a number of configuration options for fine tuning both the scheduler
and the workflow manager, however, all of them are static and do not consider the current
state of the system and its environment.

121

. E

Adaptation Strategy The task we want to implement is a control system on top of the
HTCondor job submission that would ensure high throughput while preventing infras-
tructure overload. One way to achieve this is to base the adaptation on a model that takes
the number of jobs in a queue (N), together with a service rate (µ) and a number of exe-
cuting DAGMan instances (m) to compute a delay (d) used to throttle DAGMan workflow
submission rates and thereby keeping the number of idle jobs within a certain range5.

In order to maintain a certain utilization of the system and prevent its overload, we de-
sign a basic controller that will be integrated in our illustrative architecture. The control
maintains a certain number of jobs in the queue, denoted by N∗. There is a configura-
tion option in DAGMan that controls the number of seconds it waits before submitting a
task (DAGMAN_SUBMIT_DELAY). By making DAGMan to reread this option before each sub-
mission, we can impose an adjustable delay, d, for all DAGMans that can be dynamically
modified according to the state of the system.

Let m denotes the number of clients representing the running DAGMan instances at
some sample time t. Each client i is submitting at rate λi =

1
d therefore the total arrival

rate at t is

λ =
m∑
i=1

1

d
=

m

d

The control is based on optimizing the utilization of the queue ρ(N) = λ
µ depending on

the number of jobs N , in order to maintain N in some interval close to N∗. The model
recognizes three states of N :

1. if N = N∗ then the queue is ideally filled so we only maintain the λ = µ;

2. if it is less, we linearly increase the allowed arrival rate λ; and

3. when it is more we vigorously decrease it all the way to 0 shall N = Nc.

This leads to the following control model of the queue growth rate (cf. Figure 6.2)6:

ρ(N) =


ρ0 +

N(1−ρ0)
N∗ for 0 < N < N∗, ρ0 > 1

1 for N = N∗

α(N −Nc)
p for N > N∗, where α = 1

(N∗−Nc)p

(6.1)

where Nc > N∗ denotes some critical number of jobs in the queue that must not be
reached, ρ0 is the maximum growth rate allowed in the system and p is a coefficient of the
decrease rate in the third case.

From the utilization and total arrival rate we can derive the target delay d as:

ρ(N) =
λ

µ
=

m
d

µ
d =

m

ρ(N)µ
(6.2)

5There exist two configuration options in HTCondor that express similar concerns. MAX_JOBS_SUBMITTED
limits the number of jobs permitted in a schedd queue. Submitting a new job over this limit will fail, which
may consequently fail the entire workflow execution. DAGMAN_MAX_JOBS_IDLE has been recently introduced to
DAGMan controlling the maximum number of idle jobs allowed within a workflow before DAGMan temporarily
stops submitting. It, however, considers only job clusters (not individual jobs) neither other DAGMans. Both
options are expressed as constants in the condor configuration file.

6For simplicity, in the first case, we use N = N∗ while in practice it would be better to use a vicinity ϵ
around N∗

122

6.1. Experimental Case Studies

N⇤ Nc N

⇢

⇢0

1

�(N)

0

Figure 6.2: Relation between queue utilization ρ and number of idle jobs N

Feedback Architecture We start implementing this adaptation scenario by defining the
target system touchpoints. First, the following sensors are needed to collect the three met-
rics (N,µ,m) required by the controller: (1) CondorQueueStats that provides the number
of idle jobs in the queue N using the condor_q command7, (2) CondorServiceRate that
computes the current service rate µ from the Condor history file8 and (3) ProcessCounter
that obtains the number of DAGMan instances m by executing the system ps command9.
We encapsulate the sensors related to schedd into a composite, Schedd (cf. Figure 6.3)10.
They both define condorConfig property pointing to the HTCondor configuration file and
this way they can share the same property defined at the composite level.

Schedd

provided out execTime

execTime

queueSize
: CondorQueueStats

serviceRate
: CondorServiceRate

out output

out serviceRateout queueSize

out output

condorConfig=?condorConfig=?
queueType="idle"

Figure 6.3: Schedd composite

The control model (6.1) uses all three measurements at the same time. For this we
define a simple Aggregate processor. Once pulled over its only output port, it pulls
all connected inputs returning the values synchronized in a tuple. It corresponds to
the ⟨ ⇓ (output);⇓ (queueSize, serviceRate, dagmanCount); ∅ ⟩ interaction contract. Fig-
ure 6.4 shows the Schedd composite embedded in a new composite, CondorStats, together

7http://research.cs.wisc.edu/htcondor/manual/current/condor_q.html
8http://research.cs.wisc.edu/htcondor/manual/current/condor_history.html
9Assuming HTCondor runs on POSIX-like OS, http://pubs.opengroup.org/onlinepubs/9699919799/

utilities/ps.html
10The execTime provided sensor will be explained later in this section.

123

http://research.cs.wisc.edu/htcondor/manual/current/condor_q.html
http://research.cs.wisc.edu/htcondor/manual/current/condor_history.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/ps.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/ps.html

. E

with the Aggregate processor and the ProcessCounter sensor. To prevent oscillation, we
further added MovingAverage filters (cf. Section 4.1.6). We use them only for the N and µ

since the number of HTCondor does not fluctuate much as the workflow are usually long
running processes.

CondorStats

in input

queueSizeAvg
: MovingAverage

serviceRateAvg
: MovingAverage

aggregate
: Aggregate

in input

out output

out output

ou
t

co
nd

or
St

at
s

initialWindowSize=5

initialWindowSize=5

out output

out serviceRate

out queueSize

pr
ov

id
ed

 o
ut

 e
xe

cT
im

e

provided out execTime

condorConfig=?

in serviceRate

in queueSizeschedd: Schedd

dagmanCounter
: ProcessCounter

out output

procFilter=...

in dagmanCount

Figure 6.4: CondorStats composite.

Next, we need to implement the effector that adjusts the submission delay d. Since
DAGMan only evaluates its configuration options when it starts11, we had to make a small
modification that rereads the delay time before each submission from an external file. A
FileWriter effector is used to simply write the computed delay into that file.

Figure 6.5 shows the resulting architecture, using LoadController implementing the
actual control model elaborated above (6.1) and (6.2). The PeriodicTrigger is the very
same as we used for the running example (cf. Section 3.3.1).

LocalControl

co
nt

ro
l

la
ye

r

loadController
: LoadController

sy
st

em

la
ye

r

trigger
: PeriodTrigger

in input

out condorStats

out output

initialPeriod=10s

condorConfig=?
condorStats: CondorStats

out output
in input

dagmanDelayer
: FileWriter

in text

file=?

Nstar=?
Nc=?
p=?
rho0=?

Figure 6.5: LocalControl composite

11There is a request to change this, cf. ticket 2616 (https://htcondor-wiki.cs.wisc.edu/index.cgi/
tktview?tn=2616

124

https://htcondor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2616
https://htcondor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2616

6.1. Experimental Case Studies

Hierarchy of Feedback Control Loops - Adaptive Monitoring The primary concern in
the above overload control is to protect an unbounded usage of the schedd submission
service. The problem is that the protection of one resource might consequently jeopar-
dize another and thus transform one problem into a different and potentially worse one.
Therefore, in general, this process has to be done recursively for any probable unbounded
resource usage, regardless of whether it is a system resource or a service usage.

In our solution this problem is found in the monitoring part concretely in the Condor-
QueueStats sensor. Internally it executes the condor_q command that makes the schedd
walks its entire job queue, which becomes an expensive operation when the number of
enqueued jobs is large. One way to fix this is by adding a new control layer on top of the
existing one that will throttle the execution frequency of the CondorQueueStats sensor.

AdaptiveMonitor

periodController
: PeriodController

out output

inputAvg
: MovingAverage

in inputin
 i

np
ut

in input

ou
t

ou
tp

ut

out output

initialWindowSize=5

(a) AdaptiveMonitor composite

LocalControl

co
nt

ro
l

la
ye

r

loadController
: LoadController

sy
st

em

la
ye

r

trigger
: PeriodTrigger

in input

out condorStats

out output

initialPeriod=10s

condorConfig=?

m
et

a-
co

nt
ro

l
la

ye
r

setPeriod

monitor
: AdaptiveMonitor

in inputout output

out output

provided out execTime

condorStats: CondorStats

in input

dagmanDelayer
: FileWriter

in input
file=?

Nstar=?
Nc=?

p=?
rho0=?

(b) LocalControl composite

Figure 6.6: LocalControl composite extended with adaptive control

The new architecture is shown in Figure 6.6. We extend CondorQueueStatswith a pro-
vided sensor execTime to yield how long it took to execute the condor_q command (cf.
Figure 6.3). This information is passed to the PeriodController that adjusts the monitor-
ing period of the PeriodicTrigger proportionally to the execution time of the condor_q.

125

. E

We have also added data stabilization to prevent control oscillation and since it repre-
sents a generally reusable functionality of an adaptive monitoring, we have additionally
extracted it into its own composite, AdaptiveMonitor.

Furthermore, apart from the LoadController and FileWriter, all the other adaptive
elements are part of monitoring that is responsible for computing metrics about HTCon-
dor. We therefore extract them into their own composite AdaptiveCondorStats. Fig-
ure 6.7 shows the composite and the new organization of the LocalControl composite.

AdaptiveCondorStats
trigger: PeriodTrigger

in input

out condorStats

out output
initialPeriod=10s

condorConfig=?

setPeriod

monitor
: AdaptiveMonitor

in input
out output

provided out execTime

condorStats: CondorStats

ou
t

co
nd

or
St

at
s

(a) AdaptiveCondorStats composite

LocalControl

co
nt

ro
l

la
ye

r

loadController
: LoadController

sy
st

em

la
ye

r

out condorStats

out output

in input

dagmanDelayer
: FileWriter

in input
file=?

Nstar=?
Nc=?
p=?
rho0=?

condorStats
: AdaptiveCondorStats

condorConfig=?

(b) LocalControl composite

Figure 6.7: Encapsulation of adaptive elements related to system monitoring

Hierarchy of Feedback Control Loops - Adaptive Control So far, the controller tuning
parameters such as N and N∗ were used as constants, i.e., adaptive element properties
(Nstar, Nc). In Figure 6.8 we show a possible extension of the architecture where both
properties are adapted at runtime using adaptive control. First, we create a new composite

AdaptiveLoadController

loadController
: LoadController

in input

ou
t f

re
eM

em

initialPeriod=1min

in input

out outputin input

out Nstar

p=?
rho0=? NstarNc

queueSizeController
: QueueSizeController

freeMemAvg
: MovingAverage

trigger
: PeriodTrigger

out Nc

initialWindowSize=5

out output

out outputin inputin
 i

np
ut

ou
t o

ut
pu

t

initialNstar=?
initialNc=?

meta-control layer
control layer

(a) LoadController composite

LocalControl

out condorStats

out output

in input

dagmanDelayer: FileWriter

in input

file=?

p=?
rho0=?

condorStats
: AdaptiveCondorStats

mem: SystemMemStats

in freeMem

loadController
: AdaptiveLoadController

out output

co
nt

ro
l

la
ye

r
sy

st
em

la

ye
r

condorConfig=?

type=free

(b) LocalControl composite

Figure 6.8: Encapsulation of monitoring elements

AdaptiveLoadController where we place the original LoadController. Then we turn the
Nstar and Nc properties into provided effectors allowing to adjust N and N∗ variables.
This modification only required to change 4 lines of FCDL code, from:

126

6.1. Experimental Case Studies

property Nstar: int
property Nc: int

to:

provided effector Nstar: int
provided effector Nc: int

act onNstar(Nstar;;)
act onNc(Nc;;)

Next, we need to create a new controller and a control model that will appropriately
adapt the two parameters. One way is to relate the ideal and maximum queue size to the
amount of available memory. Again, we use PeriodicTrigger for system observation.
It gathers the available memory and passes it through a moving average filter into the
QueueSizeController that proportionally adjusts the corresponding queue size through
the provided effectors. Finally, in the LocalControl composite we need to change the type
of loadController to the newly created composite AdaptiveLoadController and connect
the freeMem port to SystemMemStats (change of 5 lines).

The FCDL code creating the AdaptiveLoadController composite has 41 lines includ-
ing the changes to LoadController. On the other hand, it is important to note here, that
this scenario extension was made just to demonstrate how an adaptive control can be built
using FCDL. Developing a control model that correctly adjusts the N and N∗ is not trivial
and goes beyond the scope of this work.

Experimental Results To evaluate the capacity of the resulting architecture (cf. Fig-
ure 6.7), we set up two HTCondor deployments, with and without the feedback control
loops. For both runs we used 20 clients together submitting a diamond-shaped work-
flow of 1000 tasks, each with a different running time. We initialized the overload control
model with12 N∗ = 1000, Nc = 1500, p = 5, ρ0 = 10. Results are show in Figure 6.9
presenting the system behavior without (6.9(a)) and with (6.9(b)) control respectively.

In the feedback controlled system, the amount of idle jobs were for most of the run
slightly (6.9%) above the N∗, on average by 69 jobs (116 max). The average load on the
host with control was 0.6 in comparison to 3.37 in the system without any control. As
shown in Figure 6.9(a), major problems arose when the system started running out of
memory and began to swap. After that, it spent most of the time waiting for I/O (on
average 51.29% of CPU time were iowait comparing to 15.6% in case of the managed sys-
tem). The gaps in Figure 6.9(a) were caused by timeouts when condor_q tried to get the
queue information from the schedd agent during the period the system was too stressed
(corresponding to load > 9). Finally, one of the important differences is in the amount
of work done during the observed period. Because of the resource waste caused by the
overload, the unmanaged system executed only 560 tasks while the controlled version did
1620 tasks.

12These constants were obtained manually, by profiling the schedd.

127

. E

 0

 2000

 4000

 6000

 8000

 10000

 12000

14:00 14:10 14:20 14:30 14:40 14:50
 0

 200

 400

 600

 800

 1000

N
um

be
r o

f j
ob

s
(N

)

M
B

time

idle jobs
average idle jobs
finished jobs
system swap used
system mem used

(a) uncontrolled

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

10:30 10:40 10:50 11:00 11:10 11:20
 0

 200

 400

 600

 800

 1000

N
um

be
r o

f j
ob

s
(N

)

M
B

time

idle jobs
average idle jobs
finished jobs
system swap used
system mem used

(b) controlled

Figure 6.9: HTCondor local job submission behavior with and without control

128

6.1. Experimental Case Studies

Discussion In this case study, we have shown the process of the end-to-end implemen-
tation of an overload control in HTCondor. It showed the use of composition to manage
the syntax complexities, refining the architecture as new functionalities are being added.
We have also showed some reuse, namely the PeriodicTrigger processors that were be-
fore used in the running scenario (cf. Section 3.3.1). Finally, we have briefly presented
some experimental results of the system capability.

The experimental setup we use is rather illustrative and does not reflect the industrial
scale of contemporary HTCondor deployments [Bradley et al., 2011]. Also, the introduced
control model is rather simple. The main purpose of this case study is to demonstrate
the capabilities of the proposed approach and the effort of a systematic integration of
control mechanisms into a software system and their evolution. In this case, the effort
equals to 160 FCDL source lines of code (SLOC) and 600 SLOC in Java (cf. Listing D.1).
Interpreting SLOC is always problematic [Jones, 1978], however, what is important about
these numbers, for developing a scenario such as the one shown here, is that (1) the 600
SLOC of the touchpoints implementation would have to be implemented in one way or
another; (2) the 120 SLOC of FCDL creates a model and an executable application that
can be used directly in connection to a real system, as we have demonstrated in this case
study.

The FCDL code defines the architecture of the system and the implementation of the
controllers and Java was used for the HTCondor touchpoints. There are two reasons for
using Java for touchpoints implementation: (1) we used Java before to implement HTCon-
dor touchpoints for a similar scenario [Krikava and Collet, 2011] using an earlier version
of FCDL and (2) to demonstrate a possible separation of concerns. Control engineers use
FCDL to define the overall architecture and to implement the adaptation engine using
Xbase expressions, while the more elaborative and technical processors and target sys-
tems touchpoints are developed by programmers and experts in the respective domains
using Java, Scala or Xbase within FCDL. Because of the interaction contracts, there is
also no ambiguity of the adaptive elements behavior. Furthermore, thanks to the Eclipse
integration both tasks can be realized within the A modeling environment (cf. Sec-
tion 5.4) that simplifies and promotes collaboration.

129

. E

6.1.3 Case Study 2: HTCondor Distributed Job Submission Overload Control

Scenario Overview The previous case study considered only one submission host (one
schedd). In this subsection we extend the scenario to cover overload control in a dis-
tributed environment. Concretely we experiment with HTCondor-C13 that allows to move
jobs from one submission hosts to another, potentially geographically distributed, provid-
ing grid computation mechanisms [Thain et al., 2005].

User Interface 1

User Interface 2

User Interface N

Executes

HTCondor cluster
of worker nodes

Users

Users

Users

Submit

workflows

Submit
jobs

...
Central schedd

Figure 6.10: Overview of the HTCondor distributed overload control scenario.

Figure 6.10 shows an overview of this control scenario. Each client is an interface for
workflow submission similar to the one introduced in the previous section (cf. Figure 6.1).
The main difference is that this time the local schedulers, running on the user interface
clients, do not execute the jobs directly, but rather they move them to the central scheduler.

Adaptation Strategy Similarly to the previous scenario the control is based on adjust-
ing the submission rate according to the current queue utilization. This time however,
instead of imposing a delay before submission, we throttle the amount of jobs DAGMans
submit at a time. There is a configuration option that constrains how many of the ready
to be submitted jobs can be submitted at once (DAGMAN_MAX_SUBMITS_PER_INTERVAL). The
objective of the control is to dynamically adjust this option based on the current state of
the environment.

In order not to overload the HTCondor-C environment, each DAGMan has to consider
utilization of two queues: the one of its local schedd, ρl, and the central one ρc. Using the
previously defined queue utilization model (6.1), we can compute the ratio between the
ideal queue utilization ρ(N) and the current one:

ρ(Nl)

ρl
and ρ(Nc)

ρc

where Nl and Nc denote the number of jobs in the local and central schedd queue respec-
tively. These ratios are used to determine what should be the maximum number of jobs
DAGMans submit next. Because we do not want to overload neither of the schedulers, we

13http://research.cs.wisc.edu/htcondor/manual/v8.1/5_3Grid_Universe.html

130

http://research.cs.wisc.edu/htcondor/manual/v8.1/5_3Grid_Universe.html

6.1. Experimental Case Studies

use the smaller value. The maximum number of job submissions, Nnext, is then:

Nnext = k

⌈
min

(
ρ(Nl)

ρl
,
ρ(Nc)

ρc

)⌉
(6.3)

where k is the DAGMAN_MAX_SUBMITS_PER_INTERVAL option. One important side effect of
this control is that each client can see the indirect effects of the other clients on the schedd.
Multiple clients can therefore use one schedd appropriately without being aware of one
another.

Feedback Architecture This scenario involves multiple hosts: the local submissions ma-
chines (user interfaces), and the central schedd. Figure 6.11 shows the respective archi-
tectures in relation to the hosts they run on.

Central schedd

network

LocalControl control layer

loadController: LoadController

system layer

out condorStats

out output

in localStats

dagmanThrottle
: FileWriter

in input

file=?

Nstar=?
Nc=?

p=?
rho0=?

k=?

condorStats
: AdaptiveCondorStats

in remoteStats

out output

CentralStats

condorStats
: AdaptiveCondorStats

stats: Queue
size=1

out outputin input

User Interfacei

condorConfig=?

condorConfig=?
centralStats

: CentralStats.stats

Figure 6.11: LocalControl composite for the second case study

- Central Host. The system running on the central schedd, represented by the Central-
Stats composite, is only responsible for gathering information for computing the uti-
lization of the central queue, i.e.,Nc andµc. We reuse the same composite, AdaptiveCon-
dorStats, but this time we do not use them for any control, instead, the measured values
are only stored in a queue. Notice, that we did not modify the AdaptiveCondorStats
so the output from this composite also includes the number of running DAGMans, mc,
which shall always be 0. There is a slight overhead of executing the ProcessCounter
processor, but it is negligible.

- User Interface. The adaptation happens at the user interface clients. The responsible
composite, LocalControl, is very similar to the one we developed in the last section.
The only modifications are in the controller. First, since the control considers utiliza-
tions of both the local one and the central queue, we extended the controller with an

131

. E

appropriate input. Second, the controller also implements a different model (6.3). Fi-
nally, the new input port remoteStats pulls data from the CentralStats composite
using the referenced feature centralStats (cf. Section 3.3.6).

Experimental Results To evaluate the architecture we set up an environment using the
Grid500014 grid computing infrastructure. Grid5000 is a scientific platform allowing reser-
vation of computing resources spread across France for conducting experiments in the
domain of distributed computing. The infrastructure allocated for this experiment con-
sists of 10 hosts: one for the central scheduler, one for an execution node allocating 160
execution slots to simulate a pool of HTCondor working nodes, and the rest for user inter-
face clients. In both cases with and without adaptation we ran 64 DAGMan instances in
parallel (8 per user interface client), each executing a diagonal-shape workflow of 10000
simple jobs. The same queue utilization model was used for all of the queues, initialized
with N∗ = 1000, Nc = 5000, p = 5, ρ0 = 10.

Figure 6.12 on page 134 shows the throughput of finished jobs during the first hour of
the two executions. Without control the average throughput was less than a half of the
one with control, corresponding to less than a half of jobs completed (3950 in comparison
to 8090). The run without control also generated about 78% more load at the submission
nodes.

Discussion This case study extended the previous with a distribution aspect showing
a practical use of remote adaptive elements. It has also demonstrated the possibility of
adaptive elements reuse in similar adaptive scenarios. This is one of our objectives, to en-
able researchers and engineers to experiment with different strategies and mechanisms
without investing much effort. The new architecture requires 87 additional lines of FCDL
code and 50 lines of Xbase expressions for the new controller (cf. Listing D.2). It reuses all
the adaptive elements developed for the local overload control, but the LoadController.
With the modularity offered by FCDL, one can start building a library of reusable com-
ponents that is particular to one's domain.

Number of AE types Number SLOC
new reused of AE instances FCDL Xbase Java

Running Example1 12 0 12 169 67 97

Case Study 1 14 1 16 176 40 355

Case Study 2 4 13 1252 87 50 0

Figure 6.13: Summary of the number of element and SLOC of the case studies. AE: Adaptive El-
ement. 1Measures based on the version showed in Figure 3.8 corresponding to Listing C.1. 214
instances per LocalControl per user interface client, 13 instances per central schedd.

14http://wwww.grid5000.fr

132

http://wwww.grid5000.fr

6.1. Experimental Case Studies

Figure 6.1.3 summarizes the number of elements used in all three case studies. It
demonstrates the possibility of reuse of adaptive elements among the scenarios. It also
shows that the overall effort in SLOC is rather low. In particular, the FCDL code related
to the system structure is rather systematic once the architecture is settled (cf. Listings D.1
and D.2).

Similarly to the previous case study, the experimental setup and the control model we
use are rather illustrative. However, it provides a complete infrastructure that can be used
by FCL practitioners to seamlessly experiment with more advanced control mechanisms.

Related Work There are other works experimenting with self-adaptive behavior for DAG-
Man. For example, Kalayci et al. [Kalayci et al., 2010] propose a distributed and adaptive
execution of DAGMan workflows by modifying the workflows themselves at runtime in
order to be able to submit parts of the workflow into different resource domains. How-
ever, this work is trying to solve a different problem, executing workflows as soon as
possible in cases more than one Condor pool is accessible.

Acknowledgments The authors would like to thank the HTCondor team from the Uni-
versity of Wisconsin-Madison for all their support.

Experiments presented in this section were carried out using the Grid'5000 experi-
mental testbed, being developed under the INRIA ALADDIN development action with
support from CNRS, RENATER and several Universities as well as other funding bodies.

133

. E

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

15:50 16:00 16:10 16:20 16:30 16:40 16:50 17:00

N

time

paramount-12.rennes.grid5000.fr
paramount-18.rennes.grid5000.fr
paramount-2.rennes.grid5000.fr

paramount-26.rennes.grid5000.fr
paramount-28.rennes.grid5000.fr
paramount-30.rennes.grid5000.fr
paramount-32.rennes.grid5000.fr
paramount-6.rennes.grid5000.fr

schedd

(a) uncontrolled

 0

 500

 1000

 1500

 2000

 2500

 3000

17:10 17:20 17:30 17:40 17:50 18:00 18:10 18:20

N

time

paramount-12.rennes.grid5000.fr
paramount-18.rennes.grid5000.fr
paramount-2.rennes.grid5000.fr

paramount-26.rennes.grid5000.fr
paramount-28.rennes.grid5000.fr
paramount-30.rennes.grid5000.fr
paramount-32.rennes.grid5000.fr
paramount-6.rennes.grid5000.fr

schedd

(b) controlled

 0

 50

 100

 150

 200

 250

 300

17:55 18:00 18:05 18:10 18:15 18:20 18:25 18:30 18:35 18:40 18:45 18:50 18:55

jo
bs

/m
in

time

Average without
Average with

Throughput without
Throughput with

(c) overall throughput

Figure 6.12: HTCondor distributed job submission behavior with and without control

134

6.2. Assessing FCDL and the A Modeling Environment

6.2 Assessing FCDL and the A Modeling Environment

In this section we further discuss the advantages and disadvantages of both the FCDL
modeling language and the A modeling environment and evaluate them against
relevant criteria and quality attributes.

The goal of FCDL and the A implementation is to integrate self-adaptation mech-
anisms into software systems. For a long time, evaluation of self-adaptive software sys-
tems has been acknowledged to be one of the major concerns [Kephart and Chess, 2003,
McKinley et al., 2004, Salehie and Tahvildari, 2005, Weyns et al., 2012]. Part of that is also
the evaluation of the tools, frameworks and runtime supports used for their engineer-
ing and executions. Since self-adaptive software systems and autonomic computing are
both relatively new and open research areas, there is a lack of commonly used evaluation
methods and assessment techniques. There are some studies that propose some evalua-
tion criteria and metrics, for example: McCann and Huebscher [McCann and Huebscher,
2004] use QoS, cost, granularity and flexibility, robustness, degree of autonomy and other
properties to evaluate autonomic systems. Cheng and Hariri [Chen and Hariri, 2007]
present a set of metrics such as scalability, adaptability, overhead, latency, complexity,
and effectiveness to evaluate their self-management systems focusing on the quality of
the adaptation engine. Neti and Muller et al. [Neti and Muller, 2007] developed a frame-
work for an analysis and reasoning about self-healing systems expressing qualities such
as support for detecting anomalous system behavior or failure diagnosis. Villegas et al.
[Villegas et al., 2011] suggest a framework for evaluating quality-driven self-adaptive soft-
ware systems focusing on the control part of these systems exercising it on 16 approaches.

The primarily focus of these studies is on the self-adaptive mechanisms, assessing the
qualities of the control. Except the last one, the evaluation methods are usually exercised
only on the particular approaches within the same study that introduced them. An excep-
tion is the work of Asadollahi et al. [Asadollahi et al., 2009] in which the authors examine
the strengths and weaknesses of their StarMX framework (cf. Section 2.2.2 on page 21)
using a number of criteria synthesized from other studies adjusted to evaluate adaptation
enabling frameworks and tools. These criteria express some of the most important capa-
bilities related to self-adaptive characteristics. They are provided to be used as a basis
for evaluating different engineering approaches in order to determine their relative prop-
erties and enable comparing different solutions to one another. While the proposed set
might not be complete and it is rather qualitative, according to us, it gives a reasonable
base to start with and we use it as a part of the FCDL and A evaluation.

The rest of the discussion in this section is organized as follows. First, we review the
application of both FCDL and A. Next, we provide a summary of the approach self-
adaptive capabilities based on the set of evaluation criteria developed by Asadollahi et
al. [Asadollahi et al., 2009] and we assess the quality attributes and limitations of our
solution. Finally, we discuss how is the approach providing higher-level abstraction and
development process automation.

135

. E

6.2.1 Application

The FCDL modeling language has become the core model for the SALTY (Self-Adaptive
very Large disTributed sYstems) project15 through which this work was funded. The project
main aim is to provide an innovative self-managing software stack for runtime self-adapta-
tion of large-scale distributed systems. To realize this objective it relies on the use MDE
techniques and principles of autonomic computing to provide end-to-end model-driven
approach for building these systems. FCDL contributes to SALTY objectives by prov-
ing a flexible higher-level abstraction for defining external self-adaptive software systems
through explicit FCLs refined as first class entities.

Within the scope of the SALTY project, another alternative implementation of FCDL
has been developed. CORONA (Control Oriented approach for buildiNg Autonomic systems)
[Nzekwa, 2013] is an approach for engineering amenable autonomic systems based on Ser-
vice Component Architecture (SCA). It uses FCDL16 for feedback control architecture speci-
fications, but provides its own code generation, verification and runtime support. Result-
ing FCDL adaptive elements are translated into SCA components and composites using
FraSCAti [Seinturier et al., 2009] as its runtime platform targeting self-configuration and
self-optimization of component-based systems such as SCA ones. With the notion of com-
ponents, properties, provided and required services and composites, the SCA model pro-
vides a feasible target for FCDL. However, since SCA does not use actor-oriented design,
the underlying implementation requires more engineering effort in order to implement
the FCDL model of computation and component isolation. Nevertheless it raises our con-
fidence in the MDE approach we have chosen and the ability of FCDL to be used for differ-
ent runtime platforms. CORONA also builds a set of services on the top of FCDL models
such as location optimizer, computing an optimal distribution of adaptive elements for a
given network topology and verification heuristics detecting architectural conflicts within
FCLs. Since these services work on the same FCDL model, both are usable within the A-
 modeling environment.

6.2.2 Self-Adaptive Characteristics and Capabilities

This subsection summarizes the possible self-adaptive characteristics and capabilities of
resulting systems built using FCDL and A. As discussed at the beginning of this
section, we evaluate this using Asadollahi et al. [Asadollahi et al., 2009] criteria. Extract-
ing similar metrics and evaluation characteristics from other studies (cf. the introduction
section), they suggest to use following properties to evaluate the various aspects of frame-
works and tools for engineering self-adaptive software systems: degree of autonomy, control
scope, self-* properties support, management logic expression and runtime updating management
logic. Furthermore, in his work, Asadollahi [Asadollahi, 2009, page 64] adds 6 more cri-
teria: control loop construction, monitoring technique, data communication facility, remote man-
agement, applicable environment and managing non-Java systems.

15An ANR (Agence Nationale de la Recherche) funded research project under the contract ANR-09-SEGI-012:
https://salty.unice.fr/

16An earlier version.

136

https://salty.unice.fr/

6.2. Assessing FCDL and the A Modeling Environment

In this subsection we use these evaluation properties to summarize the self-adaptive
capabilities of our approach. In the second set we merge managing non-Java systems prop-
erty into applicable environment as in general, we do not find the need to handle Java sys-
tems differently. We also rename management logic expression to adaptation logic expression
denoting the mechanisms for defining the self-adaptation mechanisms.

Figure 6.2.2 summarizes the capabilities of both FCDL and A. For each property
we state the capability of our approach together with an explanation and a reference for
more details. We distinguish between FCDL (a general model) and A (one possi-
ble implementation) where applicable. To improve readability, under the name of each
property we also put its definition taken from the Asadollahi's work [Asadollahi, 2009,
page 64].

The summary of the StarMX framework is given in Asadollahi work [Asadollahi, 2009,
page 65]. For the other related work (cf. Section 2.2.2), we are unable to provide a com-
parison due to the lack of public access to the frameworks (cf. Section 2.2). The exception
is Ptolemy, which is publicly available17 and whose summary of capabilities is shown in
Figure 6.2.2.

6.2.3 Quality Attributes

Regarding self-adaptive software systems, Patarin and Makpangou [Babaoglu et al., 2005]
mention three software quality attributes for a platform for self-adaptive software system
engineering, namely flexibility, performance and usability (cf. the citation in Section 2.3).
Asadollahi et al. [Asadollahi et al., 2009] further adds scalability, reusability and extensibil-
ity to cover different perspectives for a software quality evaluation of self-management
supporting frameworks. Similar attributes are also discussed and used by Chen and
Hariri [Chen and Hariri, 2007]. For evaluating FCDL and A we use these quality
attributes and further add testability that we consider to be of an equal importance.

The rest of this section provides a review of these quality attributes for both FCDL and
A. Similarly to the others [Asadollahi et al., 2009, Villegas et al., 2013], the assess-
ment is mostly qualitative and as such it tends to be rather subjective. Where possible, we
present quantitative results and put a reference to a respective section where the corre-
sponding feature is presented in details.

Flexibility The ability that allows the developer to combine his own mechanism, algorithm, or
technique in the design and implementation of the self-management logic [Asadollahi et al., 2009].

The feedback control loop in FCDL is decomposed into a number of explicit intercon-
nected adaptive elements, processes similar to functional blocks in block diagrams from
control theory (cf. Section 2.1.1). The model can represent the main three types of control
systems [Patikirikorala et al., 2012]: feedback control system, feed-forward control system,
and their combinations. An FCDL process supports multiple input and multiple outputs
whose interactions are precisely guided by interaction contracts (cf. Section 4.2). More-

17http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII8.0/index.htm

137

http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII8.0/index.htm

. E

Criteria FCDL/ A Capabilities
Degree of autonomy Closed Loops
The capability of a framework in au-
tomating the management process,
which ranges from manual to fully
autonomic [IBM, 2006].

FCDL focuses on fully automated management processed
that is backed by a closed FCL (cf. Section 3.3.1).

Control Scope Multiple heterogenous instances
The granularity or the scope of what
is being managed [IBM, 2006].

FCDL supports multiple FCL that can control various soft-
ware resources (cf. Section 3.3.1).

Self-* property support Potentially any self-* property is supported
The capability of the framework in
properly addressing different self-*
properties.

FCDL is using classical FCL (cf. Section 2.1.2) supporting
various control schemes and both parametric and structural
adaptation (cf. Section 3.3.5). Thus it is believed that any self-
* properties can be implemented. The case studies presented
in this work focus on self-optimization but we pointed out
that the model was successfully used for self-configuration as
well [Nzekwa, 2013]. Nevertheless, more evidence is needed
and it rests as a part of our further work.

Adaptation logic expression Any / Xbase or JVM-based languages
The mechanisms for defining the
self-managing requirements.

FCDL does not pose any restrictions for adaptive element
implementation. A provides a dedicated support for
Xbase and plain Java/Scala (cf. Section 5.1.3).

Runtime modification Supported
The capability of the framework in
allowing runtime modification of
the management logic.

FCDL supports reflection (cf. Section 3.3.5) allowing for hier-
archical and other control schemes to be realized (e.g. adap-
tive monitoring and adaptive control cf. Section 6.1.2).

Control loop construction Actor-oriented architecture / modeling environment
The mechanisms and facilities pro-
vided to support creating closed
control loops.

FCDL uses actor-oriented architectural models to represent
FCL. A facilitates their construction by providing sup-
port for modeling, verification and code generation (cf. Sec-
tion 5.4).

Monitoring technique Event-based
The capability of the framework
in supporting different mechanisms
for monitoring or activating control
loops.

FCDL defines active adaptive elements that can be bound to
any event source including a timer (cf. Section 3.3.3).

Data communication facility Mixed push-pull communication
The capability of the framework
in facilitating communication be-
tween control loops or autonomic el-
ements.

FCDL adaptive elements communicate through a mixture of
push-pull ports (cf. Section 4.1.2).

Remote management Embedded
The ability of the framework to en-
able managing a system remotely
and transferring the adaptation cost
to a different machine.

FCDL supports remotely distributed adaptive elements
through location transparency (cf. Section 3.3.6).

Applicable environment Any / Any supporting Java Standard Edition
The characteristics or specification of
the environment and the target sys-
tems that the framework can suc-
cessfully work with.

FCDL is technologically agnostic, however A runtime
is JVM-based requiring Java Standard Edition and thus not
suitable for embedded systems for instance (cf. Section 5.2.2).

Figure 6.14: Summary of FCDL and A self-adaptive capabilities

138

6.2. Assessing FCDL and the A Modeling Environment

Criteria Ptolemy Capability
Degree of autonomy Closed Loops
Control Scope Multiple heterogenous instances
Self-* property support Any self-*

Ptolemy can model generic feedback control loops.

Adaptation logic expression Declarative or JVM-based languages
Ptolemy uses a hierarchy of composed actors with scoped
and well-defined behavior [Liu et al., 2004]. New actors can
be added using Java.

Runtime modification Not supported
Control loop construction Actor-oriented architecture / modeling environment

including simulator
Monitoring technique Event-based
Data communication facility Mixed communication

Ptolemy support different models of computation.

Remote management Not supported
Applicable environment Embedded systems.

Figure 6.15: Summary of Ptolemy 2 self-adaptive capabilities

over, adaptive elements reflection (cf. Section 3.3.5) provides support for designing com-
plex control schemes such as cascaded control, reconfiguring control, hierarchical control,
decentralized control and hybrid control [Patikirikorala et al., 2012]. In all three case stud-
ies we have employed hierarchical control for the adaptive monitoring part which is the
most used control scheme [Patikirikorala et al., 2012]. Furthermore, the embedded sup-
port for remote distribution (cf. Section 3.3.6) allows one to design control mechanisms
that span beyond the boundary of a single host (e.g. managing remote systems).

Unlike most frameworks [Ramirez and Cheng, 2010], our model-based approach does
not dictate the system architecture neither the use of any specific technology. A is
based on Java technology and thus requires Java runtime to be present. However, by no
means it is limited to adapt only Java systems. As we have shown in all three case studies,
it has been used to adapt native applications.

Finally, our approach supports separation of concerns in the sense that the system
architecture and control mechanisms can be defined by control engineers while the im-
plementation of the technical/system-level processors or touchpoints can be carried out
by software engineers.

Scalability The capability of a system in properly handling a growing amount of load in a capable
manner [Asadollahi et al., 2009]. In our context we consider the scalability of the FCDL to
handle large models, of the A modeling environment to develop large models, and
of the A runtime to run large models.

FCDL support for composition (cf. Section 3.3.4), polymorphic adaptive elements (cf.

139

. E

Section 3.3.2) and interaction contracts (Section 4.2) scales to larger models. Throughout
the case studies we have employed these techniques and incrementally reified the FCL
architectures.

A modeling support based on FCDL allows one to organize large models into
multiple files using Java-like namespaces (cf. Section 5.1.2). The generated editing sup-
port provides Eclipse IDE integration with rich editing support that eases navigation in
larger projects and enable developing, debugging and profiling from within the same en-
vironment (cf. Section 5.4). A also includes support for verification to automatically
check assumptions about modeled architectures using structural invariants, connectivity
and reachability properties (cf. Section 5.3).

The A runtime is based on the Akka framework that has low footprint and
embraces location transparency to scale horizontally across multiple machines (cf. Sec-
tion 5.2.2 and performance part below).

Usability The effort needed to employ (e.g., learn and operate) the software solution in a partic-
ular context [van Vliet, 2008]. Assessing software usability is difficult since it also depends
on the preferences and background of its users, which is subjective by definition [Sendall
and Kozaczynski, 2003]. In our case this attribute primarily includes usability of the FCDL
language and the A modeling environment.

The FCDL language syntax is using concepts from control theory and its syntax is
close to the block digram (cf. Section 3.3.1). It is based on an actor-oriented model with
known concepts such as ports and composites. Relying on the actor-model, the system
is highly concurrent while allowing for simple adaptive element implementation without
the need to protect mutable state (cf. Section 3.1.3). It is technologically agnostic and
it only focuses on FCL architecture domain-specific concerns, thus hiding information
that are not relevant to the design (cf. Section 3.1). Moreover, interaction contracts make
the architecture both prescriptive and restrictive, guiding implementations of adaptive
elements (cf. Section 4.2.1).

FCDL follows known concepts from Java. It allows adaptive element implementa-
tion to be directly coded in Xbase or standalone in Java, Scala or other JVM compatible
languages. Finally, the A modeling environment is integrated in the Eclipse IDE
which might simplify adoption for the users already familiar with it.

Reusability The extent to which a program (or parts thereof) can be reused in other applica-
tions [van Vliet, 2008].

The three case studies already demonstrated some reusability of FCDL adaptive el-
ements and partial feedback control loop (cf. Figure 6.6). As expected, target system
touchpoints were reused in similar scenarios. The support for polymorphic adaptive el-
ements makes possible to create generic processors such as PeriodicTrigger which has
been used in all of the case studies together with the MovingAverage. FCDL furthermore
supports higher-order adaptive elements (cf. Section 5.1.3) that should also improve reuse.

140

6.2. Assessing FCDL and the A Modeling Environment

The amount of reusability of adaptive elements greatly depends on the way they are
defined. For example, in both HTCondor case studies we used ProcessCounter to count
the number of running DAGMans. We implemented it as a single sensor. An alternative
implementation would be to decompose it to smaller and more dedicated elements (cf.
Figure 6.16) relying on the mentioned support of polymorphic and higher-order adaptive
elements. The resulting new components implement rather a general functionality (e.g., a

ProcessCounter

out output

processes
: PS

processFilter
: ItemFilter

counter: Size

predicate=...

in input

out output

in input

out outputout output

Figure 6.16: A composite implementation of ProcessCounter

predicate, a sum) that improves the likelihood of being reused. On the other hand, such a
decomposition makes only sense if they will be reused, since the refinement accounts for
50 xFCDL SLOC (three new components with a composite wiring them together). The re-
sulting components are on the other hand easier to test since the functionality is reduced.

Extensibility The possibility to extend the framework to add new features or to integrate it with
other frameworks [Asadollahi et al., 2009].

FCDL and FCDL are both defined using their respective EMF meta-models. There-
fore, extending their core functionality is only possible by modifying the A source
code. On the other hand, thanks to MDE, it is possible to use the FCDL models and target
different systems, providing new code generators, verification techniques and the like.
This has been currently done in the CORONA project [Nzekwa, 2013].

Performance The amount of computing resources and code required by a program to perform a
function [van Vliet, 2008].

In our case, we consider the amount of the extra overhead caused by execution of the
self-adaptive layer. The generated adaptation system is in Java, requiring Java Standard
Edition version 1.6 and higher which already involves some memory overhead (in com-
parison to systems like HTCondor). A single instance of the A runtime with no
composites deployed accounts for 1.5MB 18. The A domain framework is based on
Akka. In Akka 2.0 version, the memory overhead is about 400 bytes per actor instance (2.7
million actors per GB of heap) with a possible throughput of 50 million messages per sec
on a single machine19. The size of an adaptive element is mostly affected by the amount of
state it keeps. The same applies for the execution time whose majority is spent in running
the user-code of adaptive element activation methods (throughput of 5000 PUSH messages

18All further measurements were conducted on MacBook Pro 2.53 Ghz Intel i5, 8GB RAM, Java 1.70_17, Akka
2.2.0

19http://letitcrash.com/post/20397701710/50-million-messages-per-second-on-a-single-machine

141

http://letitcrash.com/post/20397701710/50-million-messages-per-second-on-a-single-machine

. E

per second amount for 5% of CPU time). The main potential performance issues is in
the in-direct load caused by the sensors and effectors. That might be significant (e.g., un-
bounded execution of condor_q in the case of the experimental case studies in Section 6.1)
and it must be taken into account while designing any self-adaptive software system.

Testability The effort required to test a program to ensure that it performs its intended func-
tion [van Vliet, 2008].

FCDL models are amenable to automated consistency checking including user-defined
invariants (cf. Section 5.3.1) and external model verification of connectivity and data
reachability properties via the SPIN model checker (cf. Section 5.3.2).

In addition, the behavior of all participating adaptive elements should be tested. For
testing adaptive elements implementation, there is no particular support needed, since
they can be simply tested in isolation without the A runtime. The behavior is con-
tained in adaptive element act (cf. Section 4.2.8) classes organized into a set of ordinary
methods where each corresponds to a particular element behavior. Therefore any of the
unit testing frameworks such as JUnit 20 can be used.

6.2.4 Limitations

This subsection discusses the main limitations and shortcomings of both FCDL and A-
.

While FCDL is using static typing and does not enforce any particular data type sys-
tem, FCDL relies on the Xbase data type system which is the one of Java. One of the
limitations is that it does not support physical units. For example, there is nothing to pre-
vent typing errors such as speed = time / distance neither speed = speed1 + speed2
where speed1 is in kph and speed2 in mph. Xbase provides convenient ways for express-
ing mathematical equations, but it might be too low level for control based on concepts
such as decision tables, ruled based policies or state transition diagrams. Languages like
Drools [Browne, 2009] can be used through their respective API, however, they are not
embedded directly in the adaptive element definition. The Xtext framework we use for
FCDL implementation is rather limited in the ability of composing multiple domain-
specific languages [Voelter, 2011].

The current support for error handling is using only the default policy which keeps
restarting adaptive element certain number of times before it shutdowns. While this pol-
icy is configurable in the launcher (Section 5.2.1) it is only modifiable by using the Akka
API.

Finally, the external adaptation relies on the fact that the target system is able to pro-
vide (or be instrumented to provide) all the required touchpoints. While in general, this
is not an unreasonable assumption, we have shown that in the case of DAGMan, we had
to actually modify its code. On the other hand, there are no easy solution for this next to
direct code alteration or AOP techniques, both requiring access to the source code.

20http://junit.org/

142

http://junit.org/

6.2. Assessing FCDL and the A Modeling Environment

6.2.5 Discussion

In this section we complement above evaluation and discuss how is our approach raising
the level of abstraction and automating the development process.

Providing Higher-Level Abstraction As we have shown in the three case studies, us-
ing FCDL developers work on a higher-level of abstraction using concepts from the self-
adaptive system domain. Without a domain-specific modeling language like FCDL, de-
velopers would have to use GPL such as C++, Java or Scala that do not convey domain-
specific concerns and semantics [Schmidt, 2006]. The main advantage of a higher abstrac-
tion level is that it narrows the gap between the problem domain and the implementation
domain that in turns helps to reduce the accidental complexities. In FCDL, an FCL is
described in a model by using directly the problem domain terminology and the imple-
mentation of the system is synthesized from such a description (cf. Section 5.2.1).

This higher-level abstraction is not only reflected in the overall architecture, but also
in the implementation of adaptive elements. In particular, all the semantic rules we have
developed in Chapter 4 are embedded in the underlying domain framework allowing de-
velopers to focus solely on the implementation of the activation methods (cf. Section 5.2.2).
Figure 6.17 shows the different abstraction levels and the corresponding code (or code ex-
cerpt) needed for implementing the PeriodicTrigger processor.

It is important to note here that the abstraction we have chosen for describing feedback
control is not the only one and it is possible to have even higher-level models than FCDL.
The advantage of FCDL is that it matches block diagrams that provide an established
abstraction of feedback control loops (cf. Section 2.1.1). It is flexible, yet rigid enough for
automated synthesis of a complete control system.

Development Process Automation Chapter 5 introduced the A modeling envi-
ronment. In particular, in the last section we have shown how the modeling, code gen-
eration and verification supports are integrated into the Eclipse IDE providing and in-
tegrated development experience. Using Xbase for implementation, the code generator
emits a complete executable applications, yet with customization and configuration op-
portunities. The custom implementation of adaptive elements further separates concerns
between control mechanisms and infrastructure development. Moreover, the generated
skeleton implementation based on interaction contracts is both prescriptive and restric-
tive, guiding developers in the sense of what the architecture allows (cf. Section 4.2.8).
Next to the code generator, the verification support automatizes model consistency check-
ing including user-defined structural constraints.

Moreover, during the implementation of the case studies, we observed, that the au-
tomation of the development process helps developing the solution incrementally. As we
have shown in Section 6.1.2, we have effectively started with a basic control scheme and
refined it step-by-step into a more advanced one. At the end of each step A gen-
erated the complete code that could be directly tested and executed. This notably seems

143

. E

FCDL
Model of Computation

Actor Model

Interaction Contracts

le
ve

ls
 o

f a
bs

tra
ct

io
n

class PeriodicTriggerActor[T] extends Actor {
 var outputPortRef: ActorRef = _
 var outputPortName: String = _
 var inputPortRef: ActorRef = _
 var inputPortName: String = _
 // this method is called very time an actor receives a message
 def receive = {
 case PushMsg("selfport", _) => {
 // send and receive message passing
 val future = inputPortRef ? PullMsg(inputPortName)
 // waiting for the call to complete
 val result = Await.result(future, 5 second).asInstanceOf[T]
 Option(result) match {
 case None => // received null
 case Some(data) =>
 // fire and forget message passing
 outputPortRef ! PushMsg(outputPortName, data)
 }
 }
 // handle messages setting actor connection
 // ..
 // handle messages triggering life-cycle phases (i.e. init, destroy)
 // ..
 }
}

class PeriodicTriggerDelegate[T](ctx: DirectorContext)
 extends AdaptiveElementDelegate(ctx) {

 val input = new DefaultInPullPort[T](ctx, "input")
 val output = new DefaultOutPushPort[T](ctx, "output")

 def activate {
 Option(input.get) match {
 case Some(data) => output.put(data) // non-null data
 case None => log info "No data available on the input port"
 }
 }
}

class PeriodicTriggerActs[T] {
 def onSelfport(selfPort: Long, input: Pull[T], output: Push[T]) = {
 Option(input.get) match {
 case Some(data) => output.put(data) // non-null data
 case None => log info "No data available on the input port"
 }
 }
}

act activate {
 switch data : input.get {
 case data.present : output.put(data.get)
 default : log.info("No data available on the input port")
 }
}

xFCDL
(Xbase)

(custom implementation in Scala)

(Scala)

(Scala)

Figure 6.17: Different levels of abstraction in A system. The emphasized levels are the ones
by FCDL and A

to allow for continuous delivery, one of the pillar of the agile development process [Martin,
2003].

6.3 Summary

This chapter has presented an evaluation of this work. It showed suitability of FCDL of
A using two additional case studies taken from the HTC domain. They were fol-
lowed by a discussion about the approach application, capabilities and quality attributes.

The following chapter concludes this work and outlines some perspectives for future
research.

144

CHAPTER 7
Conclusions and Perspectives

Starting with the literature overview we studied feedback control loops and their appli-
cation into software systems as the fundamental means to achieve self-adaptive capabil-
ities. From the literature study we observed that while there is a number of approaches
that focus on enabling adaptation in software systems or on designing control mecha-
nisms, less attention is paid to the integration aspect, i.e., forming the architecture connec-
tion between the two of them. This has motivated our objective of providing researchers
and engineers with an approach that eases experimentation and implementation of self-
adaptation without the need of coping with low-level implementation and infrastructure
details.

We proposed a domain-specific modeling language called FCDL for integrating adap-
tation mechanisms into software systems through external feedback control loops. The
key advantage in the domain-specific modeling approach is the possibility to raise the
level of abstraction on which the FCLs, their processes and interactions are described,
making them amenable to automated analysis and implementation code synthesis. FCDL
defines feedback architectures as hierarchically organized networks of adaptive elements.
Adaptive elements are actor-like entities that represent the corresponding FCL processes
such as monitoring, decision-making and reconfiguration. They interact with one another
through a mixture of explicit push-pull communication channels. The model is statically
typed, handles composition, supports element distribution via location transparency and
is reflective thereby enabling coordination of multiple control loops using different con-
trol schemes. It is adaptation domain and technology agnostic making it applicable to a
wide range of software systems and adaptation properties.

The language semantics is described using a model of computation that defines oper-
ational rules governing interactions among the feedback processes. The model of com-
putation is further complemented with a notion of interaction contracts. They constrain
the allowed interactions using formal descriptions enabling various verifications such as
architecture consistency, determinacy and completeness.

145

. C  P

To facilitate the development using FCDL, a modeling environment called A has
been implemented. Integrated in the Eclipse IDE, it provides a reference implementation
of FCDL together with dedicated support for modeling, code generation and verification.
The modeling support is based on a textual domain-specific language, FCDL, that apart
from covering all FCDL concepts, enables modularization and adaptive element imple-
mentations through Java-like expressions. The A code generator transforms FCDL
architectures into executable Java applications, providing a strong mapping between the
control system design and its runtime implementation. Finally, the verification support
automates consistency checking of FCDL structural constraints including user-defined
invariants, as well as connectivity and data reachability properties through the means of
external verification.

Throughout the work, the approach was illustrated on a concrete real-world adapta-
tion scenario motivated by the work of Abdelzaher et al. [Abdelzaher and Bhatti, 1999,
Abdelzaher et al., 2002] on web servers QoS management control. To further demonstrate
the FCDL and A suitability, we have presented an end-to-end implementation of
two additional real-world case studies dealing with overload control in contemporary
high-throughput computing environments. These applications provided some further
evidence of the following benefits: (1) an explicit and concrete representation of FCLs
without imposing any particular architecture is provided; (2) each adaptive element is
an independent unit that can be developed and tested in isolation, and is reusable in dif-
ferent adaptation scenarios; (3) the reflection capabilities make complex control schemes
explicit, allowing multiple coordinated and hierarchically organized FCLs expressed in
a uniform way; (4) separation of concerns is obtained between system infrastructure and
control mechanisms development; (5) embedded support for remoting simplifies FCL de-
velopment in distributed systems is provided, and (6) incremental development in agile
settings with a continuous delivery is possible using the A modeling environment.

146

Part I

Appendices

147

A FCDL Reference

A.1 FCDL Graphical Notation

Example

Port and connections syntax

Composite

p: Processor

in input

push
connection

pull
connection

input port output port

port nameport type

element name element type

out output

AdaptiveElements

initialPeriod=10s

property

The emphasized text like this is a documentation.
active sensor

processoractive processor

controller

effector

composite

sensor

active effector

referenced
composite

[provided] <in | out> <name>

multiport

*

port name
port type

arrow direction indicates the port mode

dashed lines indicate promotion

solid lines indicate connections

indicates provided port

Figure A.1: FCDL Graphical Notation

149

A. FCDL R

A.2 FCDL Abstract Syntax: Types Packages

M
o

d
e

lE
le

m
e

n
t

-n
a

m
e

 :
 s

tr
in

g

N
a

m
e

d
E

le
m

e
n

t

-n
a

m
e

 :
 s

tr
in

g

A
n

n
o

ta
ti

o
n

-n
a

m
e

 :
 s

tr
in

g
-v

a
lu

e
 :

 s
tr

in
g

A
n

n
o

ta
ti

o
n

N
a

m
e

V
a

lu
e

P
a

ir
C

o
n

tr
o

lS
y

s
te

m

-a
ct

iv
e

 :
 b

o
o

le
a

n
 =

 f
a

ls
e

-r
o

le
 :

 A
d

a
p

ti
ve

E
le

m
e

n
tR

o
le

+
n

e
w

In
st

a
n

ce
(f

e
a

tu
re

 :
 C

o
n

ta
in

e
d

F
e

a
tu

re
)

:
A

d
a

p
tiv

e
E

le
m

e
n

tI
n

st
a

n
ce

+
n

e
w

In
st

a
n

ce
(f

e
a

tu
re

 :
 R

e
fe

re
n

ce
d

F
e

a
tu

re
)

:
A

d
a

p
tiv

e
E

le
m

e
n

tR
e

fe
re

n
ce

A
d

a
p

ti
v

e
E

le
m

e
n

tT
y

p
e

+
m

e
rg

e
(o

th
e

r
:

In
te

ra
ct

io
n

C
o

n
tr

a
ct

)
:

In
te

ra
ct

io
n

C
o

n
tr

a
ct

+
m

e
rg

e
(o

th
e

rs
 :

 L
is

t<
In

te
ra

ct
io

n
C

o
n

tr
a

ct
>

)
:

In
te

ra
ct

io
n

C
o

n
tr

a
ct

In
te

ra
c

ti
o

n
C

o
n

tr
a

c
t

P
o

rt
D

is
ju

n
c

ti
o

n

-m
a

p
p

in
g

 :
 M

a
p

[S
tr

in
g

,S
tr

in
g

]

C
o

n
cr

e
te

D
a

ta
T

yp
e

-r
e

q
u

ir
e

d
 :

 b
o

o
le

a
n

 =
 t

ru
e

-d
e

fa
u

lt
V

a
lu

e
 :

 D
a

ta
V

a
lu

e

P
ro

p
e

rt
y

D
a

ta
T

yp
e

P
a

ra
m

e
te

r

-p
o

rt
T

yp
e

 :
 P

o
rt

T
yp

e
-p

o
rt

M
o

d
e

 :
 P

o
rt

M
o

d
e

-m
u

lt
ip

o
rt

 :
 b

o
o

le
a

n
 =

 f
a

ls
e

-p
ro

vi
d

e
d

 :
 b

o
o

le
a

n
 =

 f
a

ls
e

P
o

rt

+
n

e
w

In
st

a
n

ce
()

 :
 C

o
m

p
o

si
te

In
st

a
n

ce

C
o

m
p

o
s

it
e

T
y

p
e

F
e

a
tu

reC
o

n
ta

in
e

d
F

e
a

tu
re

D
a

ta
T

y
p

e
A

rg
u

m
e

n
t

-e
n

d
p

o
in

t
:

U
R

I

R
e

fe
re

n
ce

d
F

e
a

tu
re

-p
ro

p
e

rt
y

:
P

ro
p

e
rt

y

P
ro

p
e

rt
yV

a
lu

e

P
o

rt
R

e
fe

re
n

ce

-p
ro

m
o

ti
o

n
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

L
in

k

D
a

ta
T

y
p

e

D
a

ta
T

yp
e

d
E

le
m

e
n

t

1
..

*

1

fe
a

tu
re

s

p
a

re
n

t
1

ty
p

e

0
..

*
o

p
tE

m
is

si
o

n
s

0
..

*
ty

p
e

A
rg

u
m

e
n

ts

1

p
o

rt

0
..

*

p
ro

p
e

rt
yV

a
lu

e
s 1
..

*

1 li
n

ks

p
a

re
n

t

1
..

*
p

o
rt

s

1fe
a

tu
re

1 ta
rg

e
t

1
co

m
p

o
si

te

1
..

*

1

p
o

rt
s

p
a

re
n

t

1

so
u

rc
e

0
..

*
re

q
E

m
is

si
o

n
s

1
..

*
ty

p
e

s

1
..

*

a
ct

iv
a

ti
o

n
s

0
..

*

ty
p

e
P

a
ra

m
e

te
rs

0
..

*

re
q

u
ir

e
m

e
n

ts

1
fe

a
tu

re

0
..

*

1

a
n

n
o

ta
ti

o
n

s

p
a

re
n

t

0
..

*

1

p
ro

p
e

rt
ie

s

p
a

re
n

t

1
..

*

d
a

ta
T

yp
e

s

1
d

a
ta

T
yp

e

0
..

*
a

ss
o

ci
a

te
d

C
o

n
tr

a
ct

s

0
..

*

a
rg

u
m

e
n

ts

1p
a

ra
m

e
te

r

Figure A.2: FCDL Types Package

150

A.3. FCDL Abstract Syntax: Instances Package

A.3 FCDL Abstract Syntax: Instances Package

A
d

a
p

ti
ve

E
le

m
e

n
tI

n
st

a
n

ce

C
o

m
p

o
s

it
e

In
s

ta
n

c
e

-p
o

rt
M

o
d

e
 :

 P
o

rt
M

o
d

e

P
o

rt
In

st
a

n
ce

D
a

ta
T

yp
e

In
st

a
n

ce
P

ro
p

e
rt

yI
n

st
a

n
ce

L
in

k
In

s
ta

n
c

e

+
n

e
w

In
st

a
n

ce
(f

e
a

tu
re

 :
 C

o
n

ta
in

e
d

F
e

a
tu

re
)

:
A

d
a

p
tiv

e
E

le
m

e
n

tI
n

st
a

n
ce

+
n

e
w

In
st

a
n

ce
(f

e
a

tu
re

 :
 R

e
fe

re
n

ce
d

F
e

a
tu

re
)

:
A

d
a

p
tiv

e
E

le
m

e
n

tR
e

fe
re

n
ce

A
d

a
p

ti
v

e
E

le
m

e
n

tT
y

p
e

+
n

e
w

In
st

a
n

ce
()

 :
 C

o
m

p
o

si
te

In
st

a
n

ce

C
o

m
p

o
s

it
e

T
y

p
e

-e
n

d
p

o
in

t
:

U
R

L

A
d

a
p

ti
ve

E
le

m
e

n
tR

e
fe

re
n

ce
F

e
a

tu
re

P
o

rt

C
o

n
cr

e
te

D
a

ta
T

yp
e

P
ro

p
e

rt
y

P
ro

p
e

rt
yV

a
lu

e

+
m

e
rg

e
(o

th
e

r
:

In
te

ra
ct

io
n

C
o

n
tr

a
ct

)
:

In
te

ra
ct

io
n

C
o

n
tr

a
ct

+
m

e
rg

e
(o

th
e

rs
 :

 L
is

t<
In

te
ra

ct
io

n
C

o
n

tr
a

ct
>

)
:

In
te

ra
ct

io
n

C
o

n
tr

a
ct

In
te

ra
c

ti
o

n
C

o
n

tr
a

c
t

<
<

c
re

a
te

s
>

>

0
..

*

1
p

ro
p

e
rt

ie
s

p
a

re
n

t

1
so

u
rc

e

0
..

*
re

q
E

m
is

si
o

n
s

1

p
ro

p
e

rt
y

1
d

a
ta

T
yp

e

1
..

*

1

in
st

a
n

ce
s

p
a

re
n

t

1
ty

p
e

0
..

*
re

q
u

ir
e

m
e

n
ts

1
ta

rg
e

t

0
..

*

1
p

ro
p

e
rt

ie
s

p
a

re
n

t

1
..

*

1
p

o
rt

s

p
a

re
n

t

0
..

*
a

ss
o

ci
a

te
d

C
o

n
tr

a
ct

s

0
..

*

1

p
ro

m
o

ti
o

n
s

p
a

re
n

t

0
..

*
o

p
tE

m
is

si
o

n
s

1
..

*

1

fe
a

tu
re

s

p
a

re
n

t

1 p
o

rt

0
..

*
co

n
n

e
ct

io
n

s

1
..

*

1

p
o

rt
s

p
a

re
n

t

1
..

*

co
n

tr
a

ct
s

1
fe

a
tu

re
0

..
1

va
lu

e

<
<

c
re

a
te

s
>

>

<
<

c
re

a
te

s
>

>

Figure A.3: FCDL Instances Package

151

A. FCDL R

A.4 Scala Implementation of Interaction Contract Inference

1 override def getContracts(): EList[InteractionContract] = {
2
3 // returns an execution path start starts in the given port
4 def execPath(portInst: PortInstance): Buffer[InteractionContract] = {
5 def execPath0(visited: Buffer[PortInstance])(portInst: PortInstance):
6 Buffer[InteractionContract] = {
7
8 // mark the current port as visited
9 visited += portInst

10 // the adaptive element owning this port
11 val elem = portInst.parent
12 // merged interaction contract associated with this port
13 val ic = portInst.contracts.toList match {
14 case x :: xs ⇒(x /: xs)(_ merge _)
15 case Nil ⇒
16 // if the model is well-formed this will never happen
17 // (cf contract completeness)
18 sys.error(s"No interaction contrcat associated with port $portInst")
19 }
20 // ports we should visit from this adaptive element
21 // all the interaction contract ports
22 val toVisit = (ic.requirements ++ ic.emissions ++
23 ic.activation.map(_.ports).flatten)
24 // interaction contracts are defined at the type level
25 // we have to therefore map the Port into PortInstance
26 val toVisitInst = toVisit map { p ⇒elem.getPort(p) }
27 // skip the already visited ports
28 val toVisitNew = toVisitInst -- visited
29
30 // recursively continue the graph traversal
31 val next = toVisitNew map { p ⇒
32 val paths = p.connections map execPath0(visited)
33 paths.flatten
34 }
35 ic +: next.flatten
36 }
37
38 // start the recursive graph traversal at the given port
39 execPath0(Buffer())(portInst)
40 }
41
42 def promote(ic: InteractionContract) = {
43 def promotion: PartialFunction[Port, Port] = {
44 case p if this.promotions.exists(_.source.port == p) ⇒
45 this.promotions.find(_.source.port == p).map(_.target.port).get
46 }
47
48 val A = ic.activation.map { disj ⇒
49 val ports = disj.ports.collect(promotion)
50 PortDisjunction(ports: _*)
51 }.filter(_.ports.nonEmpty)
52
53 val R = ic.requirements collect promotion
54 val Ereq = ic.reqEmissions collect promotion
55 val Eopt = ic.optEmissions collect promotion
56
57 InteractionContract(activation = A, requirements = R,
58 reqEmissions = Ereq, optEmissions = Eopt)
59 }
60
61 val startNodes = this.promotions map (_.source) collect {
62 case p @ PortInstance(INPUT, PUSH) ⇒p
63 case p @ PortInstance(OUTPUT, PULL) ⇒p
64 case p @ PortInstance(SELF, PUSH) ⇒p
65 }
66
67 // Step 1: find execution paths
68 val execPaths = startNodes map execPath

152

A.4. Scala Implementation of Interaction Contract Inference

69 // Step 2: merge
70 val merged = execPaths map {
71 _ match {
72 case Buffer(x, xs @ _*) ⇒(x /: xs)(_ merge _)
73 }
74 }
75 // Step 3: promote distinct IC
76 val promoted = merged.distinct map promote
77 // Step 4: remove empty ones
78 val paths = promoted.collect {
79 case ic if ic.activation.exists(_.ports.nonEmpty) ⇒ic
80 }
81 paths
82 }

Listing A.1: Scala implementation of the interaction contract inference

153

B FCDL Reference

B.1 Abstract Syntax

-n
a

m
e

 :
 s

tr
in

g
-i

m
p

o
rt

S
e

ct
io

n
 :

 X
Im

p
o

rt
S

e
ct

io
n

M
o

d
u

le

-n
a

m
e

 :
 s

tr
in

g
-r

o
le

 :
 A

d
a

p
ti

ve
E

le
m

e
n

tR
o

le
-a

ct
iv

e
 :

 b
o

o
le

a
n

-d
a

ta
T

yp
e

P
a

ra
m

e
te

rs
 :

 J
vm

T
yp

e
P

a
ra

m
e

te
r

A
d

a
p

ti
ve

E
le

m
e

n
tD

e
cl

D
e

c
la

ra
ti

o
n

Im
p

le
m

e
n

ta
ti

o
n

D
e

fn

-n
a

m
e

 :
 s

tr
in

g
-p

o
rt

T
yp

e
 :

 P
o

rt
T

yp
e

-p
o

rt
M

o
d

e
 :

 P
o

rt
M

o
d

e
-d

a
ta

T
yp

e
 :

 J
vm

T
yp

e
R

e
fe

re
n

ce

P
o

rt
D

e
cl

-n
a

m
e

 :
 s

tr
in

g
-e

le
m

e
n

tT
yp

e
 :

 J
vm

T
yp

e
R

e
fe

re
n

ce

F
e

a
tu

re
D

e
cl

-d
a

ta
T

yp
e

A
rg

u
m

e
n

ts
 :

 J
vm

T
yp

e
R

e
fe

re
n

ce

C
o

n
ta

in
e

d
F

e
a

tu
re

D
e

cl

-p
ro

p
e

rt
y

:
Jv

m
Id

e
n

ti
fi

a
b

le
E

le
m

e
n

t
-v

a
lu

e
 :

 X
E

xp
re

ss
io

n

P
ro

p
e

rt
y

D
e

fn

-e
n

d
p

o
in

t
:

st
ri

n
g

R
e

fe
re

n
ce

F
e

a
tu

re
e

D
e

cl

-n
a

m
e

 :
 s

tr
in

g
-o

p
ti

o
n

a
l

:
b

o
o

le
a

n
-d

a
ta

T
yp

e
 :

 J
vm

T
yp

e
R

e
fe

re
n

ce
-d

e
fa

u
lt

V
a

lu
e

 :
 X

E
xp

re
ss

io
n

P
ro

p
e

rt
y

D
e

c
l

-m
u

lt
ip

o
rt

 :
 b

o
o

le
a

n

R
e

g
u

la
rP

o
rt

D
e

cl

-p
ro

vi
d

e
d

T
yp

e
 :

 P
ro

vi
d

e
d

P
o

rt
T

yp
e

P
ro

vi
d

e
d

P
o

rt
D

e
cl

L
in

k
E

n
d

p
o

in
tD

e
fn

C
o

n
n

e
ct

io
n

D
e

cl

-p
ro

m
o

te
d

N
a

m
e

 :
 s

tr
in

g

P
ro

m
o

ti
o

n
D

e
c

l

P
o

rt
D

is
ju

n
c

ti
o

n
D

e
fn

-o
p

ti
o

n
a

l
:

b
o

o
le

a
n

P
o

rt
E

m
is

s
io

n
D

e
fn

-n
a

m
e

 :
 s

tr
in

g
-o

p
ti

o
n

a
l

:
b

o
o

le
a

n

In
te

ra
c

ti
o

n
C

o
n

tr
a

c
tD

e
c

l

X
b

a
s

e
Im

p
le

m
e

n
ta

ti
o

n
D

e
fn

X
b

a
s

e
Im

p
le

m
e

n
ta

ti
o

n
P

a
rt

-b
o

d
y

:
X

E
xp

re
ss

io
n

X
b

a
s

e
In

te
ra

c
ti

o
n

C
o

n
tr

a
c

tD
e

fn

-r
e

tu
rn

T
yp

e
 :

 J
vm

T
yp

e
R

e
fe

re
n

ce
-n

a
m

e
 :

 s
tr

in
g

-p
a

ra
m

e
te

rs
 :

 J
vm

F
o

rm
a

lP
a

ra
m

e
te

r
-b

o
d

y
:

X
E

xp
re

ss
io

n

X
b

a
s

e
O

p
e

ra
ti

o
n

D
e

fn

-t
yp

e
 :

 J
vm

T
yp

e
R

e
fe

re
n

ce
-n

a
m

e
 :

 s
tr

in
g

-r
ig

h
t

:
X

E
xp

re
ss

io
n

-w
ri

te
a

b
le

 :
 b

o
o

le
a

n

X
b

a
se

V
a

ri
a

b
le

D
e

fn

-n
a

m
e

 :
 s

tr
in

g

A
n

n
o

ta
ti

o
n

(t
yp

e
s)

1
..

*
a

ct
iv

a
ti

o
n

0
..

1
se

lf
p

o
rt

0
..

*

re
q

u
ir

e
m

e
n

ts

1
ta

rg
e

t

0
..

*
e

m
is

si
o

n
s

0
..

*
d

e
cl

a
ra

ti
o

n
s

1
fe

a
tu

re

1
so

u
rc

e

0
..

*

1 p
ro

p
e

rt
ie

s

p
a

re
n

t

1 p
o

rt

1
..

*

1 p
a

rt
s

p
a

re
n

t

1
fe

a
tu

re

0
..

*
e

le
m

e
n

ts

1
so

u
rc

e

0
..

*
a

n
n

o
ta

ti
o

n
s

0
..

1

im
p

le
m

e
n

ta
ti

o
n

1
..

*
p

o
rt

s

1co
n

tr
a

ct

1

co
m

p
o

si
te

1

p
o

rt

Figure B.1: FCDL Abstract Syntax

155

B. FCDL R

B.2 Concrete Syntax

Following is the listing of the FCDL concrete syntax using the Xtext grammar language1

which is a simple EBNF-like DSL for defining language grammars.

1 grammar fr.unice.i3s.actress.modeling.xfcdl.XFCDL with org.eclipse.xtext.xbase.Xbase
2
3 import "http://www.eclipse.org/xtext/xbase/Xbase" as xbase
4 import "http://actress.i3s.unice.fr/modeling/xfcdl/0.1"
5 import "http://www.eclipse.org/xtext/common/JavaVMTypes" as types
6 import "http://actress.i3s.unice.fr/modeling/fcdl/1.0/fcdl/types" as fcdl
7
8 // ---
9 // STRUCTURE

10 // ---
11 Module:
12 ('package' name=QualifiedName)?
13 importSection=XImportSection?
14 (elements+=AdaptiveElementDecl)*;
15
16 AdaptiveElementDecl:
17 (annotations+=Annotation)*
18 (active?='active')? role=AdaptiveElementRole name=ValidID
19 ('<' dataTypeParameters+=JvmTypeParameter (',' dataTypeParameters+=JvmTypeParameter)* '>')?
20 '{'
21 (declarations+=Declaration)*
22 (implementation=ImplementationDefn)?
23 '}';
24
25 Annotation returns fcdl::Annotation:
26 '@' name=ValidID (=>'(' arguments+=AnnotationArgument (',' arguments+=AnnotationArgument)*

')')?
27 ;
28
29 AnnotationArgument returns fcdl::AnnotationNameValuePair:
30 name=ValidID '=' value=STRING
31 ;
32
33 Declaration:
34 FeatureDecl
35 | PropertyDecl
36 | PortDecl
37 | PromotionDecl
38 | ConnectionDecl
39 | InteractionContractDecl;
40
41 FeatureDecl:
42 (ContainedFeatureDecl | ReferencedFeatureDecl);
43
44 ContainedFeatureDecl:
45 (annotations+=Annotation)*
46 'feature' name=ValidID '=' 'new' elementType=JvmTypeReference ('{' (properties+=

PropertyDefn)* '}')?;
47
48 ReferencedFeatureDecl:
49 (annotations+=Annotation)*
50 'feature' name=ValidID '=' 'ref' composite=[AdaptiveElementDecl] '.' feature=[FeatureDecl]

'@' endpoint=STRING;
51
52 PropertyDefn:
53 property=[types::JvmIdentifiableElement|ValidID] '=' value=XExpression;
54
55 PropertyDecl:
56 (annotations+=Annotation)*
57 (optional?='optional')? 'property' name=ValidID ':' dataType=JvmTypeReference ('='

defaultValue=XExpression)?;
58
59 PortDecl:

1http://www.eclipse.org/Xtext/documentation.html#grammarLanguage

156

http://www.eclipse.org/Xtext/documentation.html#grammarLanguage

B.2. Concrete Syntax

60 RegularPortDecl
61 | ProvidedPortDecl;
62
63 RegularPortDecl:
64 (annotations+=Annotation)*
65 ((portMode=PortMode)? & (portType=PortType)?)
66 (multiport?='multiport' | 'port')
67 name=ValidID ':'
68 dataType=JvmTypeReference;
69
70 ProvidedPortDecl:
71 (annotations+=Annotation)*
72 'provided' providedType=ProvidedPortType name=ValidID ':' dataType=JvmTypeReference;
73
74 ConnectionDecl:
75 (annotations+=Annotation)*
76 'connect' source=LinkEndpointDefn 'to' target=LinkEndpointDefn;
77
78 PromotionDecl:
79 (annotations+=Annotation)*
80 'promote' source=LinkEndpointDefn ('as' promotedName=ValidID)?;
81
82 InteractionContractDecl:
83 (annotations+=Annotation)*
84 'act' name=ValidID '('
85 activation+=PortDisjunctionDefn (',' activation+=PortDisjunctionDefn)* ';'
86 (requirements+=[PortDecl] (',' requirements+=[PortDecl])*)? ';'
87 (emissions+=PortEmissionDefn (',' emissions+=PortEmissionDefn)*)? ')' (optional?='?')?;
88
89 LinkEndpointDefn:
90 feature=[FeatureDecl|ValidID] ('.') port=[PortDecl|ValidID];
91
92 PortDisjunctionDefn:
93 ports+=[PortDecl] ('v' ports+=[PortDecl])*;
94
95 PortEmissionDefn:
96 port=[PortDecl] (optional?='?')?;
97
98 ImplementationDefn:
99 'implementation' XbaseImplementationDefn;

100
101 // ---
102 // XBASE Implementation
103 // ---
104 XbaseImplementationDefn:
105 {XbaseImplementationDefn} 'xbase' '{'
106 (parts+=XbaseImplementationPart)*
107 '}';
108
109 XbaseImplementationPart:
110 XbaseVariableDefn
111 | XbaseInteractionContractDefn
112 | XbaseOperationDefn;
113
114 XbaseInteractionContractDefn:
115 'act' contract=[InteractionContractDecl|ValidID] body=XBlockExpression;
116
117 XbaseOperationDefn:
118 'def' name=ValidID ('(' parameters+=FullJvmFormalParameter (',' parameters+=

FullJvmFormalParameter)* ')')?
119 (':' returnType=JvmTypeReference)? body=XBlockExpression;
120
121 XbaseVariableDefn:
122 (writeable?='var' | 'val') (=> (name=ValidID ':' type=JvmTypeReference) | name=ValidID)
123 ('=' right=XExpression)?;
124
125 XVariableDeclaration returns xbase::XExpression:
126 {xbase::XVariableDeclaration} (writeable?='var' | 'val') (=> (name=ValidID ':' type=

JvmTypeReference) | name=ValidID)
127 ('=' right=XExpression)?;
128

157

B. FCDL R

129 JvmFormalParameter returns types::JvmFormalParameter:
130 name=ValidID => (':' parameterType=JvmTypeReference)?;
131
132 FullJvmFormalParameter returns types::JvmFormalParameter:
133 name=ValidID ':' parameterType=JvmTypeReference;
134
135 // ---
136 // ENUMS
137 // ---
138 enum AdaptiveElementRole:
139 SENSOR='sensor'
140 | PROCESSOR='processor'
141 | CONTROLLER='controller'
142 | EFFECTOR='effector'
143 | COMPOSITE='composite';
144
145 enum PortMode returns fcdl::PortMode:
146 PULL='pull'
147 | PUSH='push';
148
149 enum PortType returns fcdl::PortType:
150 INPUT='in'
151 | OUTPUT='out';
152
153 enum ProvidedPortType:
154 SENSOR='sensor'
155 | EFFECTOR='effector';

Listing B.1: FCDL Concrete Syntax

B.3 FCDL to FCDL Transformation Rules

There are two concepts in the FCDL language that have no correspondence in FCDL:
Xbase implementation block and Xbase expression that are used for specifying property
values. Both concepts are only used in connection with a code generation and therefore
similarly to what is done with data type conversion, we only store references to the source
elements using the EMF adapters to be used by the code generator.

Following is the list of the transformation rules with some additional details in the
cases where the mapping is not straight-forward.

− Module maps to ControlSystem

− AdaptiveElement whose role is set to composite maps to CompositeType, others map to
AdaptiveElementType.

− JvmTypeParameter maps into DataTypeParameter as discussed in Section 5.1.5.

− JvmTypeReference maps into DataType as discussed in Section 5.1.5. JvmTypeRefer-
ence used for data type arguments in contained feature definitions maps into DataTy-
peArgument.

− ContainedFeatureDecl maps into ContainedFeature.

− ReferencedFeatureDecl maps into ReferencedFeature.

− PropertyDecl maps into Property. In FCDL the property default value is encoded as
a Xbase expression which cannot be evaluated at the transformation time and therefore
a default value is therefore not used. The expression is only attached to the Property
so it can be later used by a code generator.

− RegularPortDecl maps into Port.

158

B.3. FCDL to FCDL Transformation Rules

− ProvidedPortDecl maps into Port with provided property set to true.

− LinkEndpointDefn maps into PortReference.

− ConnectionDecl maps into Link.

− PromotionDecl maps into Link with promotion property set to true.

− PropertyDefn maps into PropertyValue however just like in the case of PropertyDecl
the actual value is stored as Xbase expression. It is therefore not used directly, but only
attached to be used later by a code generator.

− PortDisjunctionDefn maps into PortDisjunction.

− InteractionContractDeclmaps into InteractionContract. The reqEmissions and optE-
missions are populated based on the optional property of the PortEmissionDefn refer-
enced from the InteractionContractDecl.

159

C Running Scenario Implementation

C.1 Running Example FCDL Definitions

1 package demo.webserver
2
3 active sensor FileTailer {
4 out push port lines: String
5 port selfport: String
6
7 property file: String
8
9 act activate(selfport;;lines)

10 }
11
12 processor AccessLogParser {
13 in push port lines: String
14 out push port size: long
15 out push port requests: int
16
17 act activate(lines;;requests,size)
18 }
19
20 effector ContentAdaptor {
21 in push port contentTree: double
22
23 act activate(contentTree;;)
24 }
25
26 controller UtilizationController {
27 in push port utilization: double
28 out push port contentTree: double
29
30 property k: double
31 property targetUtilization: double // U^*
32 property M: int
33
34 act activate(utilization;;contentTree)
35
36 implementation xbase {
37 var G = M
38
39 act activate {
40 val E = targetUtilization - utilization
41
42 G = G + k * E
43 if (G < 0) G = 0
44 if (G > M) G = M
45
46 G
47 }
48 }
49 }
50
51 processor Accumulator {
52 in push port input: long
53 out pull port sum: long
54
55 act onInput(input;;)
56 act onSum(sum;;)
57
58 implementation xbase {
59 var value: Long = 0L
60

161

C. R S I

61 act onInput {
62 value = value + input
63 }
64
65 act onSum {
66 value
67 }
68 }
69 }
70
71 processor LoadMonitor {
72 in pull port requests: int
73 in pull port size: long
74 out pull port utilization: double
75
76 property a: Double
77 property b: Double
78
79 act activate(utilization;requests,size;)
80
81 implementation xbase {
82 var lastTime = System::currentTimeMillis
83
84 act activate {
85 val elapsed = System::currentTimeMillis - lastTime
86 val R = requests.get.get / elapsed
87 val W = size.get.get / elapsed
88
89 a*R + b*W
90 }
91 }
92 }
93
94 active processor PeriodicTrigger<T> {
95 push out port output: T
96 pull in port input: T
97 port selfport: long
98
99 provided sensor period: Duration

100 provided effector setPeriod: Duration
101
102 property initialPeriod: Duration
103
104 act activate(selfport; input; output?)
105 act onSetPeriod(setPeriod;;period?)
106
107 implementation xbase {
108
109 var currentPeriod = initialPeriod
110 var task: Cancellable
111
112 def init {
113 reschedule
114 }
115
116 def destroy {
117 task.cancel
118 }
119
120 act activate {
121 log.info("Activate at "+selfport.get)
122
123 switch data : input.get {
124 case data.present : output.put(data.get)
125 default : log.info("No data available on the input port")
126 }
127 }
128
129 act onSetPeriod {
130 if (setPeriod != currentPeriod) {
131 currentPeriod = setPeriod

162

C.1. Running Example FCDL Definitions

132 reschedule()
133 period.put(currentPeriod)
134 }
135 }
136
137 def reschedule {
138 task = context.scheduler.schedule(2.seconds, currentPeriod) [|
139 selfport.put(System::currentTimeMillis)
140]
141 }
142 }
143 }
144
145 composite ApacheWebServer {
146 property accessLogFile: String
147
148 feature accessLog = new FileTailer {
149 file = accessLogFile
150 }
151 feature accessLogParser = new AccessLogParser
152 feature adaptor = new ContentAdaptor
153
154 connect accessLog.lines to accessLogParser.lines
155
156 promote accessLogParser.size
157 promote accessLogParser.requests
158 promote adaptor.contentTree
159 }
160
161 composite UtilizationMonitor {
162 property a: double
163 property b: double
164
165 feature requestsCounter = new Accumulator
166 feature responseSizeCounter = new Accumulator
167 feature loadMonitor = new LoadMonitor {
168 a = this.a
169 b = this.b
170 }
171
172 connect requestsCounter.sum to loadMonitor.requests
173 connect responseSizeCounter.sum to loadMonitor.size
174
175
176 promote requestsCounter.input as requests
177 promote responseSizeCounter.input as size
178 promote loadMonitor.utilization
179 }
180
181 composite QOSControl {
182
183 property k: double
184 property targetUtilization: double
185 property M: int
186 property a: double
187 property b: double
188
189 feature utilization = new UtilizationMonitor {
190 a = this.a
191 b = this.b
192 }
193
194 feature scheduler = new PeriodicTrigger<Double> {
195 initialPeriod = 10.seconds
196 }
197
198 feature utilController = new UtilizationController {
199 k = this.k
200 targetUtilization = this.targetUtilization
201 M = this.M
202 }

163

C. R S I

203
204 connect utilization.utilization to scheduler.input
205 connect scheduler.output to utilController.utilization
206
207 promote utilization.requests
208 promote utilization.size
209 promote utilController.contentTree
210 }
211
212 @Main
213 composite ApacheQOS {
214 property k: double
215 property targetUtilization: double
216 property M: int
217 property a: double
218 property b: double
219 property accessLogFile: String
220
221 feature apache = new ApacheWebServer {
222 accessLogFile = this.accessLogFile
223 }
224
225 feature control = new QOSControl {
226 k = this.k
227 targetUtilization = this.targetUtilization
228 M = this.M
229 a = this.a
230 b = this.b
231 }
232
233 connect apache.requests to control.requests
234 connect apache.size to control.size
235 connect control.contentTree to apache.contentTree
236 }

Listing C.1: FCDL code of the running example as shown in Figure 3.8

C.2 PeriodicTrigger Implementation

C.2.1 Adaptive Element Delegate

1 package demo.webserver;
2
3 import fr.unice.i3s.actress.modeling.fcdl.japi.AdaptiveElementDelegate;
4 import fr.unice.i3s.actress.modeling.fcdl.japi.DefaultInPullPort;
5 import fr.unice.i3s.actress.modeling.fcdl.japi.DefaultInPushPort;
6 import fr.unice.i3s.actress.modeling.fcdl.japi.DefaultOutPushPort;
7 import fr.unice.i3s.actress.modeling.fcdl.japi.DefaultSelfPort;
8 import fr.unice.i3s.actress.modeling.fcdl.japi.DirectorContext;
9 import fr.unice.i3s.actress.modeling.fcdl.japi.Duration;

10 import fr.unice.i3s.actress.modeling.fcdl.japi.InPullPort;
11 import fr.unice.i3s.actress.modeling.fcdl.japi.InPushPort;
12 import fr.unice.i3s.actress.modeling.fcdl.japi.OutPushPort;
13 import fr.unice.i3s.actress.modeling.fcdl.japi.PullWrapper;
14 import fr.unice.i3s.actress.modeling.fcdl.japi.PushWrapper;
15 import fr.unice.i3s.actress.modeling.fcdl.japi.SelfPort;
16
17 @SuppressWarnings("all")
18 public class PeriodicTrigger<T> extends AdaptiveElementDelegate {
19 protected final PeriodicTriggerAct<T> _act;
20
21 protected final Duration initialPeriod;
22
23 protected final OutPushPort<T> output;
24
25 protected final InPullPort<T> input;
26
27 protected final SelfPort<Long> selfport;

164

C.2. PeriodicTrigger Implementation

28
29 protected final OutPushPort<Duration> period;
30
31 protected final InPushPort<Duration> setPeriod;
32
33 public PeriodicTrigger(final DirectorContext context,
34 final Duration initialPeriod) {
35 super(context);
36
37 this.initialPeriod = initialPeriod;
38 this._act = new PeriodicTriggerAct<T>(context, initialPeriod);
39 this.output = new DefaultOutPushPort(context);
40 this.input = new DefaultInPullPort(context);
41 this.selfport = new DefaultSelfPort(context);
42 this.period = new DefaultOutPushPort(context);
43 this.setPeriod = new DefaultInPushPort(context);
44 }
45
46 @Override
47 public void init() {
48 _act.init();
49 }
50
51 @Override
52 public void destroy() {
53 _act.destroy();
54 }
55
56 @Override
57 public boolean preActivate() {
58 if (setPeriod.nonEmpty()) {
59 // act onSetPeriod(setPeriod; ; period?)
60 return true;
61 }
62 if (!selfport.atLeastOneNonEmpty()) {
63 // act activate(selfport; input; output?)
64 return true;
65 }
66 return false;
67 }
68
69 @Override
70 public void activate() {
71 if (setPeriod.isEmpty()) {
72 // act onSetPeriod(setPeriod; ; period?)
73 Duration setPeriodValue = setPeriod.get();
74 PushWrapper<Duration> periodPush = new PushWrapper<Duration>(period);
75 _act.setPeriod(setPeriodValue, periodPush);
76 } else if (selfport.isEmpty()) {
77 // act activate(selfport; input; output?)
78 Long selfportValue = selfport.get();
79 PullWrapper<T> inputPull = new PullWrapper<T>(input);
80 PushWrapper<T> outputPush = new PushWrapper<T>(output);
81 _act.activate(selfportValue, inputPull, outputPush);
82 } else {
83 throw new IllegalStateException("Invalid execution");
84 }
85 }
86
87 @Override
88 public String toString() {
89 return "PeriodicTrigger";
90 }
91 }

Listing C.2: Synthesized PeriodicTrigger adaptive element delegate

C.2.2 Adaptive Element Act

165

C. R S I

1 @SuppressWarnings("all")
2 public class PeriodicTriggerAct<T> extends AdaptiveElementAct {
3 private final Duration initialPeriod;
4
5 private Duration currentPeriod = this.initialPeriod;
6
7 private Cancellable task;
8
9 private final Push<Long> selfport;

10
11 public PeriodicTriggerAct(final DirectorContext context,
12 final Duration initialPeriod) {
13 super(context);
14 this.initialPeriod = initialPeriod;
15 this.selfport = new PushSelfPort(context);
16 this.currentPeriod = this.initialPeriod;
17
18 }
19
20 @Override
21 public void init() {
22 this.reschedule();
23 }
24
25 @Override
26 public void destroy() {
27 this.task.cancel();
28 }
29
30 public Cancellable reschedule() {
31 DirectorContext _context = this.getContext();
32 Scheduler _scheduler = _context.getScheduler();
33 Duration _seconds = Duration.seconds(2);
34 final Runnable _function = new Runnable() {
35 public void run() {
36 long _currentTimeMillis = System.currentTimeMillis();
37 PeriodicTriggerActs.this.selfport.put(Long
38 .valueOf(_currentTimeMillis));
39 }
40 };
41 Cancellable _schedule = _scheduler.schedule(_seconds,
42 this.currentPeriod, _function);
43 Cancellable _task = this.task = _schedule;
44 return _task;
45 }
46
47 protected void activate(final long selfport, final Pull<T> input,
48 final Push<T> output) {
49 String _plus = ("Activate at " + Long.valueOf(selfport));
50 this.log.info(_plus);
51 Optional<T> _get = input.get();
52 final Optional<T> data = _get;
53 boolean _matched = false;
54 if (!_matched) {
55 boolean _isPresent = data.isPresent();
56 if (_isPresent) {
57 _matched = true;
58 T _get_1 = data.get();
59 output.put(_get_1);
60 }
61 }
62 }
63
64 protected void onSetPeriod(final Duration setPeriod,
65 final Push<Duration> period) {
66 boolean _notEquals = (!Objects.equal(setPeriod, this.currentPeriod));
67 if (_notEquals) {
68 this.currentPeriod = setPeriod;
69 this.reschedule();
70 period.put(this.currentPeriod);

166

C.3. ApacheQOS Composite Launcher

71 }
72 }
73 }

Listing C.3: Synthesized PeriodicTrigger adaptive element act

C.3 ApacheQOS Composite Launcher

1 public class ApacheQOSLauncher {
2
3 public static ApacheQOS createCompositeDelegate() {
4 double k = 0D;
5 double targetUtilization = 0D;
6 int M = 0;
7 double a = 0D;
8 double b = 0D;
9

10 return new ApacheQOS(k, targetUtilization, M, a, b);
11 }
12
13 public static void main(String[] args) {
14 ActressSystem system = new ActressSystem("ApacheQOS");
15 system.execute(createCompositeDelegate());
16 }
17
18 }

Listing C.4: SynthesizedApacheQOS launcher

C.4 UtilizationMonitor Composite Delegate

1 public class UtilizationMonitor extends CompositeActorDelegate {
2
3 protected final double a;
4 protected final double b;
5
6 public AdaptiveElementRef requestsCounter;
7 public AdaptiveElementRef sizeCounter;
8 public AdaptiveElementRef loadMonitor;
9

10 public UtilizationMonitor(final double a, final double b) {
11 this.a = a;
12 this.b = b;
13 }
14
15 private Accumulator createRequestsCounter(final DirectorContext context) {
16 return new Accumulator(context);
17 }
18
19 private Accumulator createSizeCounter(final DirectorContext context) {
20 return new Accumulator(context);
21 }
22
23 private LoadMonitor createLoadMonitorDelegate(final DirectorContext context) {
24 final java.lang.Double _a = this.a;
25 final java.lang.Double _b = this.b;
26 return new LoadMonitor(context, _a, _b);
27 }
28
29 @Override
30 protected void startContainedFeatures() {
31 requestsCounter = startAdaptiveElement("requestsCounter",
32 new DelegateCreator() {
33 @Override
34 public AdaptiveElementDelegate create(

167

C. R S I

35 final DirectorContext director) {
36 return createRequestsCounter(director);
37 }
38 });
39 sizeCounter = startAdaptiveElement("sizeCounter",
40 new DelegateCreator() {
41 @Override
42 public AdaptiveElementDelegate create(
43 final DirectorContext director) {
44 return createSizeCounter(director);
45 }
46 });
47 loadMonitor = startAdaptiveElement("loadMonitor",
48 new DelegateCreator() {
49 @Override
50 public AdaptiveElementDelegate create(
51 final DirectorContext director) {
52 return createLoadMonitorDelegate(director);
53 }
54 });
55 }
56
57 @Override
58 protected void lookupReferenceFeatures() {
59 // this composite does not contain any feature references
60 }
61
62 @Override
63 public void connectPorts() {
64 connectPort(loadMonitor, "requests", requestsCounter, "sum");
65 connectPort(loadMonitor, "size", sizeCounter, "sum");
66 }
67
68 @Override
69 protected void promotePorts() {
70 promotePort(requestsCounter, "request", "requests");
71 promotePort(sizeCounter, "request", "requests");
72 promotePort(loadMonitor, "utilization", "utilization");
73 }
74
75 @Override
76 protected void initializeFeatures() {
77 initalizeFeature(requestsCounter);
78 initalizeFeature(sizeCounter);
79 initalizeFeature(loadMonitor);
80 }
81
82 @Override
83 public String toString() {
84 return "UtilizationMonitor";
85 }
86
87 }

Listing C.5: SynthesizedUtilizationMonitor composite delegate

168

D Experimental Case Studies Implementation

Following is the corresponding FCDL code implementing the experimental case studies
introduce in Section 6.1. For the brevity, we omit the activation methods implementations
of the HTCondor touchpoints.

D.1 Case Study 1: HTCondor Local Job Submission Overload Control

D.1.1 FCDL Code

1 package demo.cs1
2
3 import java.util.LinkedList
4 import demo.common.ProcInfo
5 import demo.common.CondorInfo
6 import demo.webserver.PeriodicTrigger
7
8 sensor CondorQueueStats {
9 out pull port output: int

10
11 property condorConfig: String
12 property queueType: String
13
14 provided sensor execTime: long
15
16 act activate(output;;execTime)
17 }
18
19 sensor CondorServiceRate {
20 out pull port output: double
21
22 property condorConfig: String
23
24 act activate(output;;)
25 }
26
27 composite Schedd {
28 property condorConfig: String
29
30 feature queueSize = new CondorQueueStats {
31 condorConfig = this.condorConfig
32 queueType = "idle"
33 }
34
35 feature serviceRate = new CondorServiceRate {
36 condorConfig = this.condorConfig
37 }
38
39 promote queueSize.output as queueSize
40 promote serviceRate.output as serviceRate
41 promote queueSize.execTime
42 }
43
44 processor MovingAverage {
45 property initialWindowSize : int = 5
46
47 in port input: double
48 out port output: double
49
50 act activate(input;;output)
51
52 implementation xbase {

169

D. E C S I

53 val values = new LinkedList<Double>()
54 var sum = 0D
55
56 act activate {
57 values.offer(input)
58 sum = sum + input
59 if (values.size == initialWindowSize) {
60 sum = sum - values.poll
61 }
62 sum / values.size
63 }
64 }
65 }
66
67 sensor ProcessCounter {
68 out pull port output: int
69
70 property procFilter: (ProcInfo)=>boolean
71
72 act activate(output;;)
73 }
74
75 processor Aggregate {
76 out pull port output: CondorInfo
77 in pull port queueSize: int
78 in pull port serviceRate: double
79 in pull port dagmanCount: int
80
81 act activate(output; queueSize, serviceRate, dagmanCount;)
82
83 implementation xbase {
84 act activate {
85 new CondorInfo(queueSize.get.get, serviceRate.get.get, dagmanCount.get.get)
86 }
87 }
88 }
89
90 composite CondorStats {
91 property condorConfig: String
92
93 feature schedd = new Schedd {
94 condorConfig = this.condorConfig
95 }
96
97 feature queueSizeAvg = new MovingAverage
98 feature serviceRateAvg = new MovingAverage
99 feature dagmanCounter = new ProcessCounter {

100 procFilter = [|name == "condor_dagman"]
101 }
102 feature aggregate = new Aggregate
103
104 connect schedd.queueSize to queueSizeAvg.input
105 connect schedd.serviceRate to serviceRateAvg.input
106 connect queueSizeAvg.output to aggregate.queueSize
107 connect serviceRateAvg.output to aggregate.serviceRate
108 connect dagmanCounter.output to aggregate.dagmanCount
109
110 promote schedd.execTime
111 promote aggregate.output as condorStats
112 }
113
114 processor PeriodController {
115 push in port input: double
116 push out port output: long
117
118 act activate(input;;output)
119 }
120
121 composite AdaptiveMonitor {
122 feature inputAvg = new MovingAverage
123 feature periodController = new PeriodController

170

D.1. Case Study 1: HTCondor Local Job Submission Overload Control

124
125 connect inputAvg.output to periodController.input
126 promote inputAvg.input
127 promote periodController.output
128 }
129
130 effector FileWriter {
131 pull in port input: String
132
133 property file: String
134
135 act activate(input;;)
136 }
137
138 composite AdaptiveCondorStats {
139 property condorConfig: String
140
141 feature condorStats = new CondorStats {
142 condorConfig = this.condorConfig
143 }
144 feature monitor = new AdaptiveMonitor
145 feature trigger = new PeriodicTrigger<CondorInfo>
146
147 connect condorStats.condorStats to trigger.input
148 connect condorStats.execTime to monitor.input
149 connect monitor.output to trigger.setPeriod
150
151 promote trigger.output as condorStats
152 }
153
154 controller LoadController {
155 push in port input: CondorInfo
156 push out port output: long
157
158 property Nstar: double
159 property Nc: double
160 property p: int
161 property rho0: int
162
163 act activate(input;;output)
164
165 implementation xbase {
166
167 act activate {
168 // getting closer to the notation
169 val N = input.queueSize
170 val sr = input.serviceRate
171 val m = input.dagmanCount;
172 val t = System::currentTimeMillis()
173
174 if (N == 0) {
175 // no op if queue is empty
176 0
177 } else {
178 val rho = switch N {
179 case N < Nstar: rho0 + N * (1 - rho0) / Nstar
180 case N > Nstar: Math::pow(N - Nc, p) / Math::pow(Nstar - Nc, p)
181 default: 1
182 }
183
184 val d = m / (rho * sr)
185 Math::round(d);
186 }
187 }
188 }
189 }
190
191 @Main
192 composite LocalControl {
193 property condorConfig: String
194 property dagmanDelayFile: String

171

D. E C S I

195 property Nstar: double
196 property Nc: double
197 property p: int
198 property rho0: int
199
200 feature condorStats = new AdaptiveCondorStats {
201 condorConfig = this.condorConfig
202 }
203 feature loadController = new LoadController {
204 Nstar = this.Nstar
205 Nc = this.Nc
206 p = this.p
207 rho0 = this.rho0
208 }
209 feature dagmanDelayer = new FileWriter {
210 file = dagmanDelayFile
211 }
212
213 connect condorStats.condorStats to loadController.input
214 connect loadController.output to dagmanDelayer.input
215
216 }

Listing D.1: FCDL code of the experimental case study from Section 6.1.2

D.1.2 Interaction Contracts

Adaptive Element Type Interaction Contract
AdaptiveCondorStats ⟨ self ; ∅; ⇑ (condorStats, execTime) ⟩
AdaptiveMonitor ⟨ ⇑ (input); ∅; ⇑ (output) ⟩
Aggregate ⟨ ⇓ (output);⇓ (queueSize, serviceRate, dagmanCount); ∅ ⟩
CondorQueueStats ⟨ ⇓ (output); ∅; ⇑ (execTime) ⟩
CondorServiceRate ⟨ ⇓ (output); ∅; ∅ ⟩
CondorStats ⟨ ⇓ (condorStats); ∅; ⇑ (execTime) ⟩
FileWriter ⟨ ⇑ (output); ∅; ∅ ⟩
LoadController ⟨ ⇑ (input); ∅; ⇑ (output) ⟩
MovingAverage ⟨ ⇑ (input); ∅; ⇑ (output) ⟩
PeriodController ⟨ ⇑ (input); ∅; ⇑ (output) ⟩
ProcessCounter ⟨ ⇓ (output); ∅; ∅ ⟩
Schedd ⟨ ⇓ (queueSize); ∅; ⇑ (execTime) ⟩

Figure D.1: Interaction contracts

D.2 Case Study 2: HTCondor Distributed Job Submission Overload
Control

D.2.1 FCDL Code

1 package demo.cs2
2
3 import demo.common.CondorInfo
4 import demo.cs1.AdaptiveCondorStats
5 import demo.cs1.FileWriter

172

D.2. Case Study 2: HTCondor Distributed Job Submission Overload Control

6 import java.util.LinkedList
7
8 controller LoadController {
9 push in port localStats: CondorInfo

10 pull in port remoteStats: CondorInfo
11 push out port output: long
12
13 property Nstar: double
14 property Nc: double
15 property p: int
16 property rho0: int
17 property k: int
18
19 act activate(localStats;remoteStats;output)
20
21 implementation xbase {
22
23 var N1_c = 0
24 var N1_l = 0
25
26 act activate {
27 // getting closer to the notation
28 val N_c = remoteStats.get.get.queueSize
29 val mu_c = remoteStats.get.get.serviceRate
30 val N_l = localStats.queueSize
31 val mu_l = localStats.serviceRate
32
33 val r_c = utilizationRatio(N_c,N1_c,mu_c)
34 val r_l = utilizationRatio(N_l,N1_l,mu_l)
35
36 N1_c = N_c
37 N1_l = N_l
38
39 k * (Math::ceil(Math::min(r_l, r_c)) as int)
40 }
41
42 def utilizationRatio(N: int, N1: int, mu: double): double {
43 val dN = N - N1
44 val dlambda = if (dN > 0) dN + mu else 0
45
46 val rho = dlambda / mu
47 val rho_star = switch N {
48 case N == 0: rho0
49 case N < Nstar: rho0 + N * (1 - rho0) / Nstar
50 case N > Nstar: Math::pow(N - Nc, p) / Math::pow(Nstar - Nc, p)
51 }
52
53 rho_star / rho
54 }
55 }
56 }
57
58 processor Queue<T> {
59 push in port input: T
60 pull out port output: T
61
62 property size: int
63
64 act onPush(input;;)
65 act onPull(output;;)
66
67 implementation xbase {
68
69 val queue = new LinkedList<T>()
70
71 act onPush {
72 if (queue.size == size) {
73 queue.poll
74 } else {
75 queue.offer(input)
76 }

173

D. E C S I

77 }
78
79 act onPull {
80 queue.poll
81 }
82 }
83 }
84
85 @Main
86 composite CentralStats {
87 property condorConfig: String
88
89 feature condorStats = new AdaptiveCondorStats {
90 condorConfig = this.condorConfig
91 }
92 feature stats = new Queue<CondorInfo> {
93 size = 1
94 }
95
96 connect condorStats.condorStats to queue.input
97 }
98
99 @Main

100 composite LocalControl {
101 property condorConfig: String
102 property dagmanDelayFile: String
103 property Nstar: double
104 property Nc: double
105 property p: int
106 property rho0: int
107 property k: int
108
109 feature condorStats = new AdaptiveCondorStats {
110 condorConfig = this.condorConfig
111 }
112 feature loadController = new LoadController {
113 Nstar = this.Nstar
114 Nc = this.Nc
115 p = this.p
116 rho0 = this.rho0
117 k = this.k
118 }
119 feature dagmanDelayer = new FileWriter {
120 file = dagmanDelayFile
121 }
122 feature centralStats = ref CentralStats.stats @ " akka.tcp://actress@paramount-22.rennes.

grid5000.fr/user/CentralStats/stats"
123
124 connect condorStats.condorStats to loadController.localStats
125 connect centralStats.output to loadController.remoteStats
126 connect loadController.output to dagmanDelayer.input
127 }

Listing D.2: FCDL code of the experimental case study from Section 6.1.3

D.2.2 Interaction Contracts

Adaptive Element Type Interaction Contract
Queue ⟨ ⇓ (output); ∅; ∅ ⟩ ∥ ⟨ ⇑ (input); ∅; ∅ ⟩
LoadController ⟨ ⇑ (localStats);⇓ (centralStats); ⇑ (output) ⟩

Figure D.2: Interaction contracts

174

Bibliography

Abdelzaher, T. and Bhatti, N. (1999). Web Server QoS Management by Adaptive Content Delivery.
In International Workshop Quality of Service, IWQoS, London. Link: http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=766497.

Abdelzaher, T., Diao, Y., and Hellerstein, J. (2008). Introduction to control theory and its application
to computing systems. In Performance Modeling and Engineering, pages 185--215. Springer. Link:
http://link.springer.com/chapter/10.1007/978-0-387-79361-0_7.

Abdelzaher, T., Shin, K., and Bhatti, N. (2002). Performance guarantees for Web server end-systems:
a control-theoretical approach. IEEE Transactions on Parallel and Distributed Systems, 13(1):80--96.
Link: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=980028.

Abdelzaher, T. F., Stankovic, J. A., Lu, C., Zhang, R., and Lu, Y. (2003). Feedback performance control
in software services. Control Systems, IEEE, 23(3):74--90.

Abelson, H., Sussman, G. J., and Sussman, J. (1996). Structure and Interpretation of Computer Programs.
MIT Press/McGraw-Hill, Cambridge, 2nd editon edition.

Adamczyk, J., Chojnacki, R., Jarząb, M., and Zieliński, K. (2008). Rule Engine Based Lightweight
Framework for Adaptive and Autonomic Computing. In Computational Science – ICCS 2008.
Springer Berlin Heidelberg.

Agha, G. (1990). Concurrent object-oriented programming. Communications of the ACM, 33(9):125--
141. Link: http://doi.acm.org/10.1145/83880.84528.

Andersson, J., Baresi, L., Bencomo, N., De Lemos, R., Gorla, A., Inverardi, P., and Vogel, T. (2012).
Software Engineering Processes for Self-adaptive Systems. In de Lemos H. Giese, H. M. M. S.,
editor, Software Engineering for Self-adaptive Systems 2, volume 7475 of Lecture Notes in Computer
Science. Springer. Link: http://hal.inria.fr/hal-00719003.

Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, G., Kalantar, M., Krishnakumar, S.,
Pazel, D., Pershing, J., and Rochwerger, B. (2001). Oceano-SLA based management
of a computing utility. In 2001 IEEE/IFIP International Symposium on Integrated Net-
work Management Proceedings. Integrated Network Management VII. Integrated Manage-
ment Strategies for the New Millennium (Cat. No.01EX470), volume 00, pages 855--868.
IEEE. Link: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:
Oc\char"00E9\relaxano+–+SLA+Based+Management+of+a+Computing+Utility#0http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=918085.

Armstrong, J. L., Dacker, B. O., Virding, S. R., and Williams, M. C. (1992). Implementing a functional
language for highly parallel real time applications. In Software Engineering for Telecommunication
Systems and Services, pages 157--163.

Arzen, K.-E. and Cervin, A. (2005). Control and embedded computing: Survey of research direc-
tions. In In Proc. 16th IFAC World Congress, Prague, Czech Republic. Link: http://control.lth.
se/documents/2005/arz+05ifac.pdf.

Asadollahi, R. (2009). StarMX : A Framework for Developing Self-Managing Software Systems. PhD
thesis, University of Waterloo.

Asadollahi, R., Salehie, M., and Tahvildari, L. (2009). StarMX: A framework for developing self-
managing Java-based systems. In 2009 ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems, pages 58--67. Ieee. Link: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5069074.

175

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=766497
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=766497
http://link.springer.com/chapter/10.1007/978-0-387-79361-0_7
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=980028
http://doi.acm.org/10.1145/83880.84528
http://hal.inria.fr/hal-00719003
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Oc\char "00E9\relax ano+–+SLA+Based+Management+of+a+Computing+Utility#0 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=918085
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Oc\char "00E9\relax ano+–+SLA+Based+Management+of+a+Computing+Utility#0 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=918085
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Oc\char "00E9\relax ano+–+SLA+Based+Management+of+a+Computing+Utility#0 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=918085
http://control.lth.se/documents/2005/arz+05ifac.pdf
http://control.lth.se/documents/2005/arz+05ifac.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5069074
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5069074

B

Aström, K. (2006). Challenges in control education. In IFAC Symposium on Advances in Con-
trol Education, Madrid. Link: http://www.quanser.com/english/downloads/toolbox/papers/
AstromMadrid2006.pdf.

Aström, K. J. and Murray, R. M. (2009). Feedback Systems. Princeton University Press, Princeton,
2.10b edition.

Attariyan, M. and Flinn, J. (2010). Automating configuration troubleshooting with dynamic infor-
mation flow analysis. In Proceedings of the 9th USENIX conference on Operating systems design and
implementation. USENIX Association.

Babaoglu, O., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A., and van Steen,
M. (2005). The Self-Star Vision. In Babaoglu, O., Jelasity, M., Montresor, A., Fetzer, C., Leonardi,
S., van Moorsel, A., and van Steen, M., editors, Self-star Properties in Complex Information Systems,
volume 3460 of Lecture Notes in Computer Science, page 397. Springer Berlin / Heidelberg. Link:
http://dx.doi.org/10.1007/11428589_1.

Baker, H. C. and Hewitt, C. (1977). The incremenatl garbage collection of processes. ACM SIGART
Bulletin. Link: http://dl.acm.org/citation.cfm?id=806932.

Bencomo, N., Grace, P., Flores, C., Hughes, D., and Blair, G. (2008). Genie: supporting the model
driven development of reflective, component-based adaptive systems. In Proceedings of the 13th
international conference on Software engineering - ICSE '08, ICSE, page 811, New York, New York,
USA. ACM Press. Link: http://portal.acm.org/citation.cfm?doid=1368088.1368207.

Bertran, B., Bruneau, J., Cassou, D., Loriant, N., Balland, E., and Consel, C. (2012). DiaSuite: A tool
suite to develop Sense/Compute/Control applications. Science of Computer Programming, pages
1--28. Link: http://linkinghub.elsevier.com/retrieve/pii/S0167642312000652.

Bézivin, J., Jouault, F., Rosenthal, P., and Valduriez, P. (2005). Modeling in the Large and Modeling
in the Small. Model Driven Architecture, 3599:33--46.

Blair, G., Bencomo, N., and France, R. B. (2009). Models@ run.time. Computer, 42(10):22--27. Link:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5280648.

Bouchenak, S., Boyer, F., Hagimont, D., Krakowiak, S., De Palma, N., Quema, V., and Stefani, J.-
B. (2005). Architecture-Based Autonomous Repair Management: Application to J2EE Clusters.
In Autonomic Computing, 2005. ICAC 2005. Proceedings. Second International Conference on, pages
369--370.

Bradley, D., Clair, T. S., Farrellee, M., Guo, Z., Livny, M., Sfiligoi, I., and Tannenbaum, T. (2011). An
update on the scalability limits of the Condor batch system. Journal of Physics: Conference Series,
331(6):062002. Link: http://stacks.iop.org/1742-6596/331/i=6/a=062002?key=crossref.
24c9df79b3d5d797370a310478a768f0http://iopscience.iop.org/1742-6596/331/6/062002.

Brooks, C., Lee, E. A., Liu, X., Neuendorffer, S., Zhao, Y., and Zheng, H. (2008). Heteroge-
neous concurrent modeling and design in java (volume 1: Introduction to ptolemy ii). Tech-
nical report, Christopher Brooks Edward A. Lee Xiaojun Liu Stephen Neuendorffer Yang
Zhao Haiyang Zheng Electrical Engineering and Computer Sciences University of California
at Berkeley, Berkeley. Link: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=
html&identifier=ADA519074.

Brooks, C. X., Lee, E. A., and Tripakis, S. (2010). Exploring models of computation with
ptolemy II. In Proceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/-
software codesign and system synthesis - CODES/ISSS '10, page 331, New York, New York,
USA. ACM Press. Link: http://portal.acm.org/citation.cfm?doid=1878961.1879020http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5751519.

Brooks Jr., F. P. (1987). No Silver Bullet Essence and Accidents of Software Engineering. Computer,
20(4):10--19. Link: http://dx.doi.org/10.1109/MC.1987.1663532.

Browne, P. (2009). JBoss Drools Business Rules. Packt Publishing.

176

http://www.quanser.com/english/downloads/toolbox/papers/AstromMadrid2006.pdf
http://www.quanser.com/english/downloads/toolbox/papers/AstromMadrid2006.pdf
http://dx.doi.org/10.1007/11428589_1
http://dl.acm.org/citation.cfm?id=806932
http://portal.acm.org/citation.cfm?doid=1368088.1368207
http://linkinghub.elsevier.com/retrieve/pii/S0167642312000652
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5280648
http://stacks.iop.org/1742-6596/331/i=6/a=062002?key=crossref.24c9df79b3d5d797370a310478a768f0 http://iopscience.iop.org/1742-6596/331/6/062002
http://stacks.iop.org/1742-6596/331/i=6/a=062002?key=crossref.24c9df79b3d5d797370a310478a768f0 http://iopscience.iop.org/1742-6596/331/6/062002
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA519074
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA519074
http://portal.acm.org/citation.cfm?doid=1878961.1879020 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5751519
http://portal.acm.org/citation.cfm?doid=1878961.1879020 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5751519
http://dx.doi.org/10.1109/MC.1987.1663532

Bibliography

Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M., M\\"uller, H., Pezzè,
M., and Shaw, M. (2009). Engineering Self-Adaptive Systems Through Feedback Loops. Software
Engineering for Self-Adaptive Systems, pages 48--70. Link: http://www.springerlink.com/index/
32NM834361U37368.pdf.

Cámara, J., Canal, C., Cubo, J., and Murillo, J. M. (2007). An Aspect-Oriented Adaptation Frame-
work for Dynamic Component Evolution. In Proceedings of the Third International Workshop
on Coordination and Adaption Techniques for Software Entities, volume 189, pages 21--34. Link:
http://linkinghub.elsevier.com/retrieve/pii/S1571066107004884.

Capra, L., Emmerich, W., and Mascolo, C. (2003). CARISMA: Context-Aware Reflective mIddleware
System for Mobile Applications. IEEE Transactions on Software Engineering, 29(10):929--944. Link:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1237173.

Cardelli, L. (1997). Type Systems, Handbook of Computer Science and Engineering. CRC Press.

Cardelli, L. and Wegner, P. (1985). On understanding types, data abstraction, and polymorphism.
ACM Comput. Surv., 17(4):471--523. Link: http://doi.acm.org/10.1145/6041.6042.

Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., and Mirandola, R. (2009). QoS-driven runtime
adaptation of service oriented architectures. In Proceedings of the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The foundations of software engi-
neering on European software engineering conference and foundations of software engineering symposium
- E, page 131, New York, New York, USA. ACM Press. Link: http://portal.acm.org/citation.
cfm?doid=1595696.1595718.

Cassou, D., Balland, E., Consel, C., and Lawall, J. (2011). Leveraging software architectures to guide
and verify the development of sense/compute/control applications. Proceeding of the 33rd inter-
national conference on Software engineering - ICSE '11, page 431. Link: http://portal.acm.org/
citation.cfm?doid=1985793.1985852.

Chen, G. and Kotz, D. (2002). Context aggregation and dissemination in ubiquitous computing
systems. In Proceedings of the Fourth IEEE Workshop on Mobile Computing Systems and Applications,
pages 105--114. IEEE Comput. Soc. Link: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=1017490http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
1017490.

Chen, H. and Hariri, S. (2007). An evaluation scheme of adaptive configuration techniques. In
Proceedings of the twenty-second IEEE/ACM international conference on Automated software engineering
- ASE '07, page 493, New York, New York, USA. ACM Press. Link: http://portal.acm.org/
citation.cfm?doid=1321631.1321717.

Cheng, B. H. C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B., Ben-
como, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar, S., Finkelstein, A., Gacek, C.,
Geihs, K., Grassi, V., Karsai, G., Kienle, H., Kramer, J., Litoiu, M., Malek, S., Mirandola, R.,
Müller, H., Park, S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J., and Lemos, R. (2009a).
Software Engineering for Self-Adaptive Systems: A Research Roadmap. In Cheng, B. H. C.,
Lemos, R., Giese, H., Inverardi, P., and Magee, J., editors, Software Engineering for Self-Adaptive
Systems, volume 5525 of Lecture Notes in Computer Science, pages 1--26. Springer Berlin / Heidel-
berg, Berlin, Heidelberg. Link: http://dl.acm.org/citation.cfm?id=1573856.1573859http:
//dx.doi.org/10.1007/978-3-642-02161-9_1.

Cheng, S.-w. (2008). Rainbow : Cost-Effective Software. PhD thesis, Carnegie Mellon University.

Cheng, S.-W., Garlan, D., and Schmerl, B. (2009b). Evaluating the effectiveness of the Rainbow self-
adaptive system. In 2009 ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems, pages 132--141. IEEE. Link: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=5069082.

Cheng, S.-W., Garlan, D., and Schmerl, B. (2009c). RAIDE for Engineering Architecture-Based Self-
Adaptive Systems. Technical report, Computer Science Department, Carnegie Mellon University.

177

http://www.springerlink.com/index/32NM834361U37368.pdf
http://www.springerlink.com/index/32NM834361U37368.pdf
http://linkinghub.elsevier.com/retrieve/pii/S1571066107004884
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1237173
http://doi.acm.org/10.1145/6041.6042
http://portal.acm.org/citation.cfm?doid=1595696.1595718
http://portal.acm.org/citation.cfm?doid=1595696.1595718
http://portal.acm.org/citation.cfm?doid=1985793.1985852
http://portal.acm.org/citation.cfm?doid=1985793.1985852
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1017490 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1017490
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1017490 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1017490
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1017490 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1017490
http://portal.acm.org/citation.cfm?doid=1321631.1321717
http://portal.acm.org/citation.cfm?doid=1321631.1321717
http://dl.acm.org/citation.cfm?id=1573856.1573859 http://dx.doi.org/10.1007/978-3-642-02161-9_1
http://dl.acm.org/citation.cfm?id=1573856.1573859 http://dx.doi.org/10.1007/978-3-642-02161-9_1
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5069082
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5069082

B

Cisco Systems (2012). Cisco Global Cloud Index: Forecast and Methodology, 2011–2016. Technical
report, Cisco Systems.

Collet, P., Krikava, F., Montagnat, J., Blay-Fornarino, M., and Manset, D. (2010). Issues and Scenarios
for Self-Managing Grid Middleware. In Proceeding of the 2nd workshop on Grids meets autonomic
computing, GMAC, pages 1--10, Washington, USA. ACM. Link: http://dl.acm.org/citation.
cfm?id=1809033.

Conan, D., Rouvoy, R., and Seinturier, L. (2007). Scalable processing of context information with
COSMOS. In Proceedings of the 2007 International Conference on Distributed Applications and Interop-
erable Systems, pages 210--224. Link: http://www.springerlink.com/index/t15098547n1311g5.
pdf.

CRA (2003). Association, Computing Research: Final report of the CRA conference on grand re-
search challenges in information systems. Technical report, Computing Reasearch Assocation.

Czarnecki, K. (2005). Overview of Generative Software Development. Unconventional Programming
Paradigms, pages 326--341. Link: http://link.springer.com/chapter/10.1007/11527800_25.

David, P.-C., Ledoux, T., Léger, M., and Coupaye, T. (2009). FPath and FScript: Language support
for navigation and reliable reconfiguration of Fractal architectures. Annals of telecommunications -
Annales des télécommunications, 64(1-2).

DMTF (2007). Common Information Model-Simplified Policy Language (CIM-SPL). Tech-
nical report, Distributed Management Task Force. Link: www.dmtf.org/standards/
publisheddocuments/DSP0231.pdf.

Dobson, S., Denazis, S., and Fernández, A. (2006). A survey of autonomic communications.
ACM Transactions on Autonomous and Adaptive Systems, 1(2):223--259. Link: http://dl.acm.org/
citation.cfm?id=1186782.

Dowling, J. and Cahill, V. (2004). Self-managed decentralised systems using K-components and col-
laborative reinforcement learning. Proceedings of the 1st ACM SIGSOFT workshop on Self-managed
systems - WOSS '04, pages 39--43. Link: http://portal.acm.org/citation.cfm?doid=1075405.
1075413.

Doyle, J., Francis, B., and Tannenbaum, A. (1992). Feedback control theory. Macmillan Publish-
ing Co. Link: http://stuff.mit.edu/afs/athena/course/6/6.241/OldFiles/TA_materials/
Spring2011TA/reading/dft.pdf.

Eker, J., Janneck, J., Lee, E., Ludvig, J., Neuendorffer, S., and Sachs, S. (2003). Taming heterogeneity
- the Ptolemy approach. Proceedings of the IEEE, 91(1):127--144. Link: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=1173203.

Elkhodary, A., Esfahani, N., and Malek, S. (2010). FUSION: A Framework for Engineering Self-
Tuning Self-Adaptive Software Systems. In Proceedings of the eighteenth ACM SIGSOFT interna-
tional symposium on Foundations of software engineering - FSE '10, page 7, New York, New York,
USA. ACM Press. Link: http://portal.acm.org/citation.cfm?doid=1882291.1882296.

Feiler, P., Gabriel, R. P., Goodenough, J., Linger, R., Longstaff, T., Kazman, R., Klein, M., Northrop,
L., Schmidt, D., Sullivan, K., and Wallnau, K. (2006). Ultra-Large-Scale Systems -- The Soft-
ware Challenge of the Future. Technical report, software engineering institute, Carnegie Mel-
lon University, Pittsburgh, PA 15213-3890, USA. Link: www.sei.cmu.edu/library/assets/ULS_
Book20062.pdf.

Ferreira da Silva, R., Glatard, T., and Desprez, F. (2012). Self-Healing of Operational Workflow
Incidents on Distributed Computing Infrastructures. In 2012 12th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (ccgrid 2012), pages 318--325. IEEE. Link: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6217437.

Fielding, R. T. (2000). Architectural styles and the design of network-based software architectures. PhD
thesis, University of California, Irvine.

178

http://dl.acm.org/citation.cfm?id=1809033
http://dl.acm.org/citation.cfm?id=1809033
http://www.springerlink.com/index/t15098547n1311g5.pdf
http://www.springerlink.com/index/t15098547n1311g5.pdf
http://link.springer.com/chapter/10.1007/11527800_25
www.dmtf.org/standards/published documents/DSP0231.pdf
www.dmtf.org/standards/published documents/DSP0231.pdf
http://dl.acm.org/citation.cfm?id=1186782
http://dl.acm.org/citation.cfm?id=1186782
http://portal.acm.org/citation.cfm?doid=1075405.1075413
http://portal.acm.org/citation.cfm?doid=1075405.1075413
http://stuff.mit.edu/afs/athena/course/6/6.241/OldFiles/TA_materials/Spring 2011 TA/reading/dft.pdf
http://stuff.mit.edu/afs/athena/course/6/6.241/OldFiles/TA_materials/Spring 2011 TA/reading/dft.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1173203
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1173203
http://portal.acm.org/citation.cfm?doid=1882291.1882296
www.sei.cmu.edu/library/assets/ULS_Book20062.pdf
www.sei.cmu.edu/library/assets/ULS_Book20062.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6217437
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6217437

Bibliography

Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., and Gjorven, E. (2006). Us-
ing architecture models for runtime adaptability. IEEE Software, 23(2):62--70. Link:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1605180http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1605180.

Fouquet, F., Barais, O., Plouzeau, N., Jézéquel, J.-M., Morin, B., and Fleurey, F. (2012a). A Dy-
namic Component Model for Cyber Physical Systems. In 15th International ACM SIGSOFT Sym-
posium on Component Based Software Engineering, Bertinoro, Italie. Link: http://hal.inria.fr/
hal-00713769.

Fouquet, F., Nain, G., Morin, B., Daubert, E., Barais, O., Plouzeau, N., and Jézéquel, J.-M. (2012b).
An Eclipse Modelling Framework Alternative to Meet the Models@Runtime Requirements. In
Models 2012, MODELS, Innsbruck, Autriche. Link: http://hal.inria.fr/hal-00714558.

Fowler, M. (2010). Domain Specific Languages. Addison-Wesley Professional, 1st edition.

France, R., Ghosh, S., Dinh-Trong, T., and Solberg, A. (2006). Model Driven development using
UML 2.0 : Promises and Pitfalls. Computer, 39(2):59--66. Link: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=1597089.

France, R. and Rumpe, B. (2007). Model-driven Development of Complex Software: A Research
Roadmap. In Future of Software Engineering (FOSE '07), number 2 in FOSE, pages 37--54. IEEE.
Link: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4221611.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design patterns: elements of reusable object-
oriented software. Pearson Education.

Ganek, A. G. and Corbi, T. A. (2003). The dawning of the autonomic computing era. IBM Systems
Journal, 42(1):5--18. Link: http://dx.doi.org/10.1147/sj.421.0005.

Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., and Steenkiste, P. (2004). Rainbow:
architecture-based self-adaptation with reusable infrastructure. Computer, 37(10):46--54. Link:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1350726http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1301377http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=1350726.

Garlan, D., Monroe, R. T., and Wile, D. (2000). Acme: architectural description of component-
based systems. In Leavens, G. T. and Sitaraman, M., editors, Foundations of component-based sys-
tems, pages 47--67. Cambridge University Press, New York, NY, USA. Link: http://dl.acm.org/
citation.cfm?id=336431.336437.

Gat, E. (1998). On three-layer architectures. Artificial intelligence and mobile robots. Link: http:
//www.tu-chemnitz.de/etit/proaut/paperdb/download/gat98.pdf.

Gorton, I., Liu, Y., and Trivedi, N. (2006). An extensible, lightweight architecture for adaptive J2EE
applications. Proceedings of the 6th international workshop on Software engineering and middleware -
SEM '06, page 47. Link: http://portal.acm.org/citation.cfm?doid=1210525.1210537.

Grand, M. (1998). Patterns in Java, volume 1: a catalog of reusable design patterns illustrated with UML.
John Wiley & Sons, Inc., New York, NY, USA.

Haller, P. and Odersky, M. (2009). Scala Actors: Unifying thread-based and event-based program-
ming. Theoretical Computer Science, 410(2-3):202--220. Link: http://dx.doi.org/10.1016/j.tcs.
2008.09.019.

Hebig, R., Giese, H., and Becker, B. (2010). Making control loops explicit when architecting self-
adaptive systems. In Proceeding of the second international workshop on Self-organizing architectures -
SOAR '10, SOAR, page 21, New York, New York, USA. ACM Press. Link: http://portal.acm.
org/citation.cfm?doid=1809036.1809042.

179

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1605180 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1605180
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1605180 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1605180
http://hal.inria.fr/hal-00713769
http://hal.inria.fr/hal-00713769
http://hal.inria.fr/hal-00714558
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1597089
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1597089
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4221611
http://dx.doi.org/10.1147/sj.421.0005
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1350726 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1301377 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1350726
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1350726 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1301377 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1350726
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1350726 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1301377 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1350726
http://dl.acm.org/citation.cfm?id=336431.336437
http://dl.acm.org/citation.cfm?id=336431.336437
http://www.tu-chemnitz.de/etit/proaut/paperdb/download/gat98.pdf
http://www.tu-chemnitz.de/etit/proaut/paperdb/download/gat98.pdf
http://portal.acm.org/citation.cfm?doid=1210525.1210537
http://dx.doi.org/10.1016/j.tcs.2008.09.019
http://dx.doi.org/10.1016/j.tcs.2008.09.019
http://portal.acm.org/citation.cfm?doid=1809036.1809042
http://portal.acm.org/citation.cfm?doid=1809036.1809042

B

Hellerstein, J. (2010). Why feedback implementations fail: the importance of systematic testing.
In Proceedings of the Fifth International Workshop on Feedback Control Implementation and Design in
Computing Systems and Networks, FeBiD '10, pages 25--26, New York, NY, USA. ACM. Link: http:
//doi.acm.org/10.1145/1791204.1791209.

Hellerstein, J., Diao, Y., Parekh, S., and Tilbury, D. (2004). Feedback control of computing systems. Wiley
Online Library. Link: http://onlinelibrary.wiley.com/doi/10.1002/047166880X.fmatter/
pdf.

Hewitt, C. (1977). Viewing control structures as patterns of passing messages. Artificial Intelligence,
8(3):323--364. Link: http://dx.doi.org/10.1016/0004-3702(77)90033-9.

Holzmann, G. J. (2003). Spin Model Checker. Addison-Wesley Professional, 1. edition edition.

Horn, P. (2001). Autonomic Computing: IBM’s Perspective on the State of Information Tech-
nology. Technical report, IBM. Link: http://www.research.ibm.com/autonomic/manifesto/
autonomic_computing.pdf.

HP (2003). HP Unveils Adaptive Enterprise Strategy to Help Businesses Manage Change and Get
More from Their IT Investments.

Huebscher, M. C. and McCann, J. a. (2008). A survey of autonomic computing—degrees, mod-
els, and applications. ACM Computing Surveys, 40(3):1--28. Link: http://portal.acm.org/
citation.cfm?doid=1380584.1380585.

Huth, M. and Ryan, M. (2004). Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press, 2 edition edition.

IBM (2006). An Architectural Blueprint for Autonomic Computing. Technical report, IBM. Link:
http://people.cs.kuleuven.be/~danny.weyns/csds/IBM06.pdf.

ISO14977 (1996). Information technology -- Syntactic metalanguage -- Extended BNF. Techni-
cal report, ISO/IEC. Link: http://standards.iso.org/ittf/PubliclyAvailableStandards/
s026153_ISO_IEC_14977_1996(E).zip.

Johnson, R. and Foote, B. (1988). Designing reusable classes. Journal of object-oriented programming,
1(2):1--27. Link: http://www.laputan.org/drc.html.

Jones, T. C. (1978). Measuring programming quality and productivity. IBM Systems Journal, 17(1):39-
-63. Link: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5388030.

Jouault, F., Bézivin, J., and Kurtev, I. (2006). TCS:: a DSL for the specification of textual concrete
syntaxes in model engineering. In Proceedings of the 5th international conference on Generative pro-
gramming and component engineering - GPCE '06, page 249, New York, New York, USA. ACM Press.
Link: http://dl.acm.org/citation.cfm?id=1173744http://portal.acm.org/citation.cfm?
doid=1173706.1173744.

Kaczorek, T. (1993). Linear Control Systems: Synthesis of multivariable systems and multidimensional
systems. Vol.2. INDUSTRIAL CONTROL, COMPUTERS and COMMUNICATION SERIES Series.
Research Studies Press Limited. Link: http://books.google.fr/books?id=N81pQgAACAAJ.

Kalayci, S., Dasgupta, G., Fong, L., Ezenwoye, O., and Sadjadi, S. (2010). Distributed
and Adaptive Execution of Condor DAGMan Workflows. In Proceedings of the 2010
International Conference on Software Engineering and Knowledge Engineerin (SEKE'10),
page 7. Link: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:
Distributed+and+Adaptive+Execution+of+Condor+DAGMan+Workflows#0.

Kelly, S. (2004). Comparison of Eclipse EMF/GEF and MetaEdit+ for DSM. In OOPSLA. Link:
http://www.softmetaware.com/oopsla2004/kelly.pdf.

Kelly, S. and Pohjonen, R. (2009). Worst Practices for Domain-Specific Modeling. IEEE Software,
26(4):22--29. Link: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
5076455.

180

http://doi.acm.org/10.1145/1791204.1791209
http://doi.acm.org/10.1145/1791204.1791209
http://onlinelibrary.wiley.com/doi/10.1002/047166880X.fmatter/pdf
http://onlinelibrary.wiley.com/doi/10.1002/047166880X.fmatter/pdf
http://dx.doi.org/10.1016/0004-3702(77)90033-9
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://portal.acm.org/citation.cfm?doid=1380584.1380585
http://portal.acm.org/citation.cfm?doid=1380584.1380585
http://people.cs.kuleuven.be/~danny.weyns/csds/IBM06.pdf
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://www.laputan.org/drc.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5388030
http://dl.acm.org/citation.cfm?id=1173744 http://portal.acm.org/citation.cfm?doid=1173706.1173744
http://dl.acm.org/citation.cfm?id=1173744 http://portal.acm.org/citation.cfm?doid=1173706.1173744
http://books.google.fr/books?id=N81pQgAACAAJ
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Distributed+and+Adaptive+Execution+of+Condor+DAGMan+Workflows#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Distributed+and+Adaptive+Execution+of+Condor+DAGMan+Workflows#0
http://www.softmetaware.com/oopsla2004/kelly.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5076455
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5076455

Bibliography

Kelly, S. and Tolvanen, J.-P. (2008). Domain-Specific Modeling: Enabling Full Code Generation. Wiley-
IEEE Computer Society Press. Link: http://www.dsmbook.com/.

Kephart, J. and Chess, D. (2003). The Vision of Autonomic Computing. Computer,
36(1):41--50. Link: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1160055http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1160055.

Kephart, J. O. (2011). Autonomic computing: the first decade. In Proceedings of the 8th ACM interna-
tional conference on Autonomic computing, ICAC '11, pages 1--2, New York, NY, USA. ACM. Link:
http://doi.acm.org/10.1145/1998582.1998584.

Kolovos, D., Paige, R., and Polack, F. (2006). The Epsilon Object Language (EOL). In Rensink, A.
and Warmer, J., editors, Model Driven Architecture – Foundations and Applications, volume 4066
of Lecture Notes in Computer Science, pages 128--142. Springer Berlin / Heidelberg. Link: http:
//dx.doi.org/10.1007/11787044_11.

Kolovos, D., Paige, R., and Polack, F. (2009). On the Evolution of OCL for Capturing Structural
Constraints in Modelling Languages. In Abrial, J.-R. and Glässer, U., editors, Rigorous Methods for
Software Construction and Analysis, volume 5115 of Lecture Notes in Computer Science, pages 204--
218. Springer Berlin / Heidelberg. Link: http://dx.doi.org/10.1007/978-3-642-11447-2_13.

Krahn, H., Rumpe, B., and Völkel, S. (2010). MontiCore: a framework for compositional develop-
ment of domain specific languages. International Journal on Software Tools for Technology Transfer,
12(5):353--372. Link: http://link.springer.com/10.1007/s10009-010-0142-1.

Krikava, F. and Collet, P. (2011). A Reflective Model for Architecting Feedback Control Systems. In
Proceeding of the 2011 International Conference on Software Engineering and Knowledge Engineering,
SEKE, page 7, Miami.

Krikava, F. and Collet, P. (2012a). On the Use of an Internal DSL for Enriching EMF Models. In
Proceedings of the Proceedings of the 2012 International Workshop on OCL and Textual Modelling, OCL,
page 6, Innsbruck. ACM.

Krikava, F. and Collet, P. (2012b). Using Architecture Models to Rapidly Prototype Feedback Control
Systems. In Actes des quatrièmes journées nationales du Groupement De Recherche CNRS du Génie de
la Programmation et du Logiciel, GDR-GPL, page 2.

Krikava, F., Collet, P., and Blay-Fornarino, M. (2011). Uniform and Model-Driven Engineering of
Feedback Control Systems. In Proceedings of the 2011 International Conference on Autonomic Com-
puting, short paper, ICAC, page 2, Karlshuhe. ACM Press.

Krikava, F., Collet, P., and France, R. B. (2012). Actor-based Runtime Model of Adaptable Feedback
Control Loops. In Proceeding of the 2012 International Workshop on Models@Runtime in association
with MODELS'12, MRT, page 6, Innsbruck. ACM.

Kumar, V., Cooper, B. F., Cai, Z., Eisenhauer, G., and Schwan, K. (2007). Middleware for enter-
prise scale data stream management using utility-driven self-adaptive information flows. Cluster
Computing, 10(4):443--455. Link: http://link.springer.com/10.1007/s10586-007-0040-9.

Lee, E. A. (2003). Model-Driven Development - From Object-Oriented Design to Actor-Oriented
Design. In Workshop on Software Engineering for Embedded Systems, Chicago.

Lee, E. A. (2006). The Problem with Threads. Computer, 39(5):33--42. Link: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1631937.

Lee, E. A. (2010). Disciplined heterogeneous modeling. In Petriu, D., Rouquette, N., and Haugen,
O., editors, Proceedings of the ACM/IEEE 13th International Conference on Model Driven Engineering,
Languages, and Systems (MODELS), pages 273--287. Link: http://link.springer.com/chapter/
10.1007/978-3-642-16129-2_20.

Leung, J. M.-K., Filiba, T., and Nagpal, V. (2008). VHDL Code Generation in the Ptolemy II Envi-
ronment. Technical report, University of California, Berkeley.

181

http://www.dsmbook.com/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1160055 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1160055
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1160055 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1160055
http://doi.acm.org/10.1145/1998582.1998584
http://dx.doi.org/10.1007/11787044_11
http://dx.doi.org/10.1007/11787044_11
http://dx.doi.org/10.1007/978-3-642-11447-2_13
http://link.springer.com/10.1007/s10009-010-0142-1
http://link.springer.com/10.1007/s10586-007-0040-9
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1631937
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1631937
http://link.springer.com/chapter/10.1007/978-3-642-16129-2_20
http://link.springer.com/chapter/10.1007/978-3-642-16129-2_20

B

Lingrand, D., Montagnat, J., and Glatard, T. (2009). Modeling user submission strategies on
production grids. In Proceedings of the 18th ACM international symposium on High performance
distributed computing - HPDC '09, page 121, New York, New York, USA. ACM Press. Link:
http://portal.acm.org/citation.cfm?doid=1551609.1551633.

Litoiu, M., Woodside, M., and Zheng, T. (2005). Hierarchical model-based autonomic control
of software systems. In Proceedings of the 2005 International Workshop on Design and Evolution
of Autonomic Application Software (DEAS '05), New York, New York, USA. ACM Press. Link:
http://portal.acm.org/citation.cfm?doid=1083063.1083071.

Liu, J., Eker, J., Janneck, J., Liu, X., and Lee, E. (2004). Actor-Oriented Control System Design: A
Responsible Framework Perspective. IEEE Transactions on Control Systems Technology, 12(2):250--
262. Link: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1281782.

Maggio, M. (2011). Control Based Design of Computing Systems. PhD thesis, Politechnico di Milano.

Maggio, M., Hoffmann, H., Santambrogio, M. D., Agarwal, A., and Leva, A. (2011). Decision
making in autonomic computing systems. In Proceedings of the 8th ACM international confer-
ence on Autonomic computing - ICAC '11, ICAC '11, page 201, Karlsruhe, Germany. ACM Press.
Link: http://dl.acm.org/citation.cfm?id=1998629http://portal.acm.org/citation.cfm?
doid=1998582.1998629.

Martin, R. C. (2003). Agile Software Development: Principles, Patterns, and Practices. Prentice Hall PTR,
Upper Saddle River, NJ, USA.

McCann, J. and Huebscher, M. (2004). Evaluation issues in autonomic computing. In Grid and
Cooperative Computing-GCC 2004, pages 597--608. Link: http://link.springer.com/chapter/
10.1007/978-3-540-30207-0_74.

McKinley, P., Sadjadi, S., Kasten, E., and Cheng, B. (2004). Composing adaptive software.
Computer, 37(7):56--64. Link: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1310241.

Microsoft (2004). Microsoft Dynamic Systems Initiative Overview. Technical report, Microsoft Cor-
poration.

Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F., and Solberg, A. (2009). Models@Run.time to
Support Dynamic Adaptation. Computer, 42(10):44--51. Link: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=5280651.

Mukhija, A. and Glinz, M. (2005). Runtime adaptation of applications through dynamic recompo-
sition of components. In Proc. of 18th International Conference on Architecture of Computing Systems,
pages 124--138. Link: http://link.springer.com/chapter/10.1007/978-3-540-31967-2_9.

Müller, H., Kienle, H., and Stege, U. (2009). Autonomic computing now you see it, now you
don't. Software Engineering, pages 32--54. Link: http://link.springer.com/chapter/10.1007/
978-3-540-95888-8_2.

Müller, H., Pezzè, M., and Shaw, M. (2008). Visibility of control in adaptive systems. In Proceedings
of the 208 International Workshop on Ultra-Large-Scale Software-Intensive Systems, ULSSIS, pages 23--
26, New York, New York, USA. ACM Press. Link: http://portal.acm.org/citation.cfm?doid=
1370700.1370707.

Netcraft (2013). March 2013 Web Server Survey. Technical report, Netcraft. Link: http://news.
netcraft.com/archives/2013/03/01/march-2013-web-server-survey.html.

Neti, S. and Muller, H. a. (2007). Quality Criteria and an Analysis Framework for Self-Healing
Systems. In International Workshop on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS '07), pages 6--6. IEEE. Link: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4228606.

182

http://portal.acm.org/citation.cfm?doid=1551609.1551633
http://portal.acm.org/citation.cfm?doid=1083063.1083071
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1281782
http://dl.acm.org/citation.cfm?id=1998629 http://portal.acm.org/citation.cfm?doid=1998582.1998629
http://dl.acm.org/citation.cfm?id=1998629 http://portal.acm.org/citation.cfm?doid=1998582.1998629
http://link.springer.com/chapter/10.1007/978-3-540-30207-0_74
http://link.springer.com/chapter/10.1007/978-3-540-30207-0_74
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1310241
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1310241
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5280651
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5280651
http://link.springer.com/chapter/10.1007/978-3-540-31967-2_9
http://link.springer.com/chapter/10.1007/978-3-540-95888-8_2
http://link.springer.com/chapter/10.1007/978-3-540-95888-8_2
http://portal.acm.org/citation.cfm?doid=1370700.1370707
http://portal.acm.org/citation.cfm?doid=1370700.1370707
http://news.netcraft.com/archives/2013/03/01/march-2013-web-server-survey.html
http://news.netcraft.com/archives/2013/03/01/march-2013-web-server-survey.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4228606
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4228606

Bibliography

Nilsson, N. J. (1980). Principles of Artificial Intelligence. Tioga Press, Palo Alto. Link: http://www.
amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0934613109.

Nzekwa, R. (2013). Building Manageable Autonomic Control Loops for Large Scale Systems. PhD thesis,
Universit{é} des Sciences et Technologie de Lille - Lille I. Link: http://tel.archives-ouvertes.
fr/tel-00843874.

OASIS (2007). Service Component Architecture (SCA). Technical report, OASIS Open CSA. Link:
http://www.oasis-opencsa.org/sca.

Object Management Group (2011). Unified Modeling Language™ (UML®). Technical report, Object
Management Group. Link: http://www.omg.org/spec/UML/2.4.1/.

Object Management Group (2012a). Common Object Request Broker Architecture (CORBA)®. Tech-
nical report, OMG. Link: http://www.omg.org/spec/CORBA/.

Object Management Group (2012b). OMG Object Constraint Language (OCL). Technical report,
Object Management Group. Link: http://www.omg.org/spec/OCL/2.3.1.

Object Management Group (2012c). Systems Modeling Language (SysML). Technical report, Object
Management Group. Link: http://www.omg.org/spec/SysML/1.3/.

Odersky, M. (2011). The Scala Language Specification. Technical report, Programming Methods
Laboratory, EPFL. Link: www.scala-lang.org/docu/files/ScalaReference.pdf�.

Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., Mihaylov, N., Schinz, M.,
Stenman, E., and Zenger, M. (2004). An Overview of the Scala Programming Language. Technical
report, École Polytechnique Fédérale de Lausanne.

Ohloh (2013). Ohloh public directory of Free and Open Source Software. Link: http://www.ohloh.
net/.

Oreizy, P., Rosenblum, D. S., and Taylor, R. N. (1998). On the Role of Connectors in Modeling and
Implementing Software Architectures. Technical report, DEPARTMENT OF INFORMATION
AND COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA.

Patikirikorala, T., Colman, A., Han, J., and Wang, L. (2012). A systematic survey on the design of
self-adaptive software systems using control engineering approaches. In Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), 2012 ICSE Workshop on, pages 33--42.

Ramaprasad, A. (1983). On the definition of feedback. Behavioral Science, 28(1):4--13. Link: http:
//dx.doi.org/10.1002/bs.3830280103.

Ramirez, A. J. and Cheng, B. H. C. (2010). Design patterns for developing dynamically adaptive
systems. In Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS '10, pages 49--58, New York, NY, USA. ACM. Link: http://doi.acm.
org/10.1145/1808984.1808990.

Romero, D., Rouvoy, R., and Chabridon, S. (2010). Middleware Approach for Ubiquitous Envi-
ronments. Enabling Context-Aware Web Services: Methods, Architectures, and Technologies, pages
113--135.

Rouvoy, R., Barone, P., Ding, Y., Eliassen, F., Hallsteinsen, S., Lorenzo, J., Mamelli, A., and Scholz,
U. (2008). MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and Service-Oriented
Environments. In MobMid '08: Proceedings of the 1st workshop on Mobile middleware, pages 164--182,
New York, NY, USA. ACM.

Sadjadi, S. and McKinley, P. (2004). ACT: an adaptive CORBA template to support unantici-
pated adaptation. In 24th International Conference on Distributed Computing Systems, 2004. Proceed-
ings., pages 74--83. IEEE. Link: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1281570.

183

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0934613109
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0934613109
http://tel.archives-ouvertes.fr/tel-00843874
http://tel.archives-ouvertes.fr/tel-00843874
http://www.oasis-opencsa.org/sca
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/CORBA/
http://www.omg.org/spec/OCL/2.3.1
http://www.omg.org/spec/SysML/1.3/
www.scala-lang.org/docu/files/ScalaReference.pdf‎
http://www.ohloh.net/
http://www.ohloh.net/
http://dx.doi.org/10.1002/bs.3830280103
http://dx.doi.org/10.1002/bs.3830280103
http://doi.acm.org/10.1145/1808984.1808990
http://doi.acm.org/10.1145/1808984.1808990
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1281570
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1281570

B

Sadjadi, S. M., McKinley, P. K., Cheng, B. H., and Stirewalt, R. K. (2004). TRAP/J: Trans-
parent Generation of Adaptable Java Programs. On the Move to Meaningful Internet Systems
2004: CoopIS, DOA, and ODBASE, 3291. Link: http://link.springer.com/chapter/10.1007/
978-3-540-30469-2_28.

Salehie, M. and Tahvildari, L. (2005). Autonomic computing: emerging trends and open prob-
lems. ACM SIGSOFT Software Engineering Notes. Link: http://dl.acm.org/citation.cfm?id=
1083082.

Salehie, M. and Tahvildari, L. (2009). Self-adaptive software: Landscape and research challenges.
ACM Transactions on Autonomous and Adaptive Systems (TAAS), 4(2):1--42. Link: http://portal.
acm.org/citation.cfm?id=1516538.

Schmidt, D. C. (2002). Middleware for real-time and embedded systems. Communications of the
ACM, 45(6). Link: http://portal.acm.org/citation.cfm?doid=508448.508472.

Schmidt, D. C. (2006). Guest Editor's Introduction: Model-Driven Engineering. Computer, 39(2):25-
-31.

Seinturier, L., Merle, P., Furnier, D., Dolet, N., Schiavoni, V., and Stefani, J.-B. (2009). Reconfigurable
SCA Applications with the FraSCAti Platform. In Proceeding of the 6th IEEE International Conference
on Service Computing, SCC, pages 268--275, Bangalore, India. Link: http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=5283947.

Sendall, S. and Kozaczynski, W. (2003). Model transformation: The heart and soul of model-driven
software development. Software, IEEE, 20(5):1--12. Link: http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=1231150.

Shaw, M. (1995). Beyond objects: A software design paradigm based on process control. ACM
SIGSOFT Software Engineering Notes, 20(1):38. Link: http://portal.acm.org/citation.cfm?id=
225911.

Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy, S., and Sekar, V. (2012). Making
middleboxes someone else's problem. In Proceedings of the ACM SIGCOMM 2012 conference on
Applications, technologies, architectures, and protocols for computer communication - SIGCOMM '12,
page 13, New York, New York, USA. ACM Press. Link: http://dl.acm.org/citation.cfm?doid=
2342356.2342359.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E. (2008). EMF: Eclipse Modeling Framework
(2nd Edition). Addison-Wesley Professional. Link: http://www.eclipse.org/emf.

Sun, M. (1997). Java Code Conventions. Technical report, Sun Microsystems. Link: http://www.
oracle.com/technetwork/java/codeconv-138413.html.

Sutter, H. and Larus, J. (2005). Software and the Concurrency Revolution. ACM Queue, 3(7):54--62.
Link: http://doi.acm.org/10.1145/1095408.1095421.

Szyperski, C. (2002). Component Software: Beyond Object-Oriented Programming. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition.

Tamura, G., Casallas, R., Cleve, A., and Duchien, L. (2010). QoS Contract-Aware Recon guration
of Component Architectures Using E-Graphs. In 7th International Workshop on Formal Aspects of
Component Software, number i in FACS, page 2010.

Tamura, G., Villegas, N., Müller, H., A., H., Duchien, L., and Seinturier, L. (2013). Improving context-
awareness in self-adaptation using the DYNAMICO reference model. In Proceedings of the 8th
International Symposium on Software Engineering for Adaptive and Self-Managing Systems, number i
in SEAMS, pages 153--162. Link: http://dl.acm.org/citation.cfm?id=2487361.

Taylor, R. N., Medvidovic, N., and Dashofy, E. (2010). Software Architecture: Foundations, Theory, and
Practice. Wiley. Link: http://books.google.fr/books?id=j9pdGQAACAAJ.

184

http://link.springer.com/chapter/10.1007/978-3-540-30469-2_28
http://link.springer.com/chapter/10.1007/978-3-540-30469-2_28
http://dl.acm.org/citation.cfm?id=1083082
http://dl.acm.org/citation.cfm?id=1083082
http://portal.acm.org/citation.cfm?id=1516538
http://portal.acm.org/citation.cfm?id=1516538
http://portal.acm.org/citation.cfm?doid=508448.508472
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5283947
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5283947
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1231150
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1231150
http://portal.acm.org/citation.cfm?id=225911
http://portal.acm.org/citation.cfm?id=225911
http://dl.acm.org/citation.cfm?doid=2342356.2342359
http://dl.acm.org/citation.cfm?doid=2342356.2342359
http://www.eclipse.org/emf
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://doi.acm.org/10.1145/1095408.1095421
http://dl.acm.org/citation.cfm?id=2487361
http://books.google.fr/books?id=j9pdGQAACAAJ

Bibliography

Tewari, V. and Milekovic, M. (2006). Standards for Autonomic Computing. Intel Technology Journal,
10(4).

Thain, D., Tannenbaum, T., and Livny, M. (2005). Distributed computing in practice:
The Condor experience. Concurrency and Computation Practice and Experience, 17(2-4):323--
356. Link: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.6.3035&rep=
rep1&type=pdf.

Tolvanen, J. and Kelly, S. (2005). Defining domain-specific modeling languages to automate product
derivation: Collected experiences. Software Product Lines, pages 198--209. Link: http://link.
springer.com/chapter/10.1007/11554844_22.

Tolvanen, J.-P. (2012). More or less languages: panel at MODELS 2012. Link: http://www.metacase.
com/blogs/jpt/blogView?showComments=true&entry=3531392326.

Typesafe (2013). Akka 2.1.2 Documentation. Technical report, Typesafe. Link: http://doc.akka.
io/docs/akka/2.1.2/Akka.pdf.

van Vliet, H. (2008). Software Engineering: Principles and Practice. John Wiley & Sons, 3rd editio
edition.

Villegas, N., Tamura, G., Müller, H., Duchien, L., and Casallas, R. (2013). DYNAMICO : A Ref-
erence Model for Governing Control Objectives and Context Relevance in Self-Adaptive Soft-
ware Systems. Software Engineering for Self-adaptive Systems 2, pages 265--293. Link: http:
//link.springer.com/chapter/10.1007/978-3-642-35813-5_11.

Villegas, N. M., Müller, H. A., Tamura, G., Duchien, L., and Casallas, R. (2011). A framework for
evaluating quality-driven self-adaptive software systems. In Proceedings of the 6th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, volume 1 of SEAM '11,
page 80, New York, New York, USA. ACM Press. Link: http://portal.acm.org/citation.cfm?
doid=1988008.1988020.

Voelter, M. (2011). Language and IDE Modularization and Composition with MPS. In 4th Generative
& Transformational Techniques in Software Engineering, Braga.

Vogel, T. and Giese, H. (2010). Adaptation and abstract runtime models. In Proceedings of the
2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems - SEAMS '10,
SEAMS, pages 39--48, New York, New York, USA. ACM Press. Link: http://portal.acm.org/
citation.cfm?doid=1808984.1808989.

Vogel, T. and Giese, H. (2012). A Language for Feedback Loops in Self-Adaptive Systems: Exe-
cutable Runtime Megamodels. In 7th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS), number 3 in SEAMS, pages 129--138. IEEE. Link:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6224399.

Vromant, P., Weyns, D., Malek, S., and Andersson, J. (2011). On interacting control loops in self-
adaptive systems. In Proceeding of the 6th international symposium on Software engineering for adaptive
and self-managing systems, SEAMS, New York, New York, USA. ACM Press. Link: http://portal.
acm.org/citation.cfm?doid=1988008.1988037.

Waldo, J., Wyant, G., Wollrath, A., and Kendall, S. (1994). A Note on Distributed Computing.
Technical report, Sun Microsystems. Link: http://link.springer.com/content/pdf/10.1007/
3-540-62852-5_6.

Weyns, D., Iftikhar, M., Malek, S., and Andresson, J. (2012). Claims and supporting evidence for self-
adaptive systems: A literature study. In Proceeding of the 2012 International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. Link: http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=6224395.

Weyns, D. and Malek, S. (2010). FORMS: a formal reference model for self-adaptation. In Proceedings
of the 2010 International Conference on Autonomic Computing (ICAC'10), pages 205--214. Link: http:
//portal.acm.org/citation.cfm?id=1809078.

185

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.6.3035&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.6.3035&rep=rep1&type=pdf
http://link.springer.com/chapter/10.1007/11554844_22
http://link.springer.com/chapter/10.1007/11554844_22
http://www.metacase.com/blogs/jpt/blogView?showComments=true&entry=3531392326
http://www.metacase.com/blogs/jpt/blogView?showComments=true&entry=3531392326
http://doc.akka.io/docs/akka/2.1.2/Akka.pdf
http://doc.akka.io/docs/akka/2.1.2/Akka.pdf
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_11
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_11
http://portal.acm.org/citation.cfm?doid=1988008.1988020
http://portal.acm.org/citation.cfm?doid=1988008.1988020
http://portal.acm.org/citation.cfm?doid=1808984.1808989
http://portal.acm.org/citation.cfm?doid=1808984.1808989
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6224399
http://portal.acm.org/citation.cfm?doid=1988008.1988037
http://portal.acm.org/citation.cfm?doid=1988008.1988037
http://link.springer.com/content/pdf/10.1007/3-540-62852-5_6
http://link.springer.com/content/pdf/10.1007/3-540-62852-5_6
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6224395
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6224395
http://portal.acm.org/citation.cfm?id=1809078
http://portal.acm.org/citation.cfm?id=1809078

White, J., Schmidt, D., and Gokhale, A. (2005). Simplifying autonomic enterprise java bean applica-
tions via model-driven development: A case study. In Proc. 8th Intl. Conf. Model Driven Engineering
Languages and Systems. Link: http://link.springer.com/chapter/10.1007/11557432_45.

Xiong, Y. and Lee, E. (2000). An Extensible Type System for Component-Based Design. In 6th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems, LNCS, Berlin,
Germany.

Zhang, J. and Cheng, B. H. C. (2006). Model-based development of dynamically adaptive software.
In Proceeding of the 28th international conference on Software engineering - ICSE '06, ICSE '06, page
371, New York, New York, USA. ACM Press. Link: http://doi.acm.org/10.1145/1134285.
1134337http://portal.acm.org/citation.cfm?doid=1134285.1134337.

Zhao, Y. (2003). A Model of Computation with Push and Pull Processing. Technical report, Technical
Memorandum UCB/ERL M03/51, University of California, Berkeley.

186

http://link.springer.com/chapter/10.1007/11557432_45
http://doi.acm.org/10.1145/1134285.1134337 http://portal.acm.org/citation.cfm?doid=1134285.1134337
http://doi.acm.org/10.1145/1134285.1134337 http://portal.acm.org/citation.cfm?doid=1134285.1134337

	Contents
	List of Figures
	Listings
	1 Introduction
	1.1 Context and Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Outline

	2 Self-Adaptive Software Systems
	2.1 Principles
	2.1.1 Feedback Control Loop
	2.1.2 Applications to Software Systems
	2.1.3 Autonomic Computing

	2.2 Related Work
	2.2.1 Approaches Facilitating Self-Adaptation
	2.2.2 Approaches Aiming at Generic Self-Adaptation

	2.3 Summary

	3 Modeling Feedback Control Architectures - Syntax
	3.1 Design Decisions
	3.1.1 Challenges Revisited
	3.1.2 Why a Model-Driven Engineering Approach?
	3.1.3 Why an Actor-Oriented Design?

	3.2 Running Example
	3.3 Feedback Control Definition Language
	3.3.1 High-Level Overview
	3.3.2 Data Types
	3.3.3 Adaptive Element
	3.3.4 Composition
	3.3.5 Reflection
	3.3.6 Distribution
	3.3.7 Instances
	3.3.8 Annotations

	3.4 Summary

	4 Modeling Feedback Control Architectures - Semantics
	4.1 Model of Computation
	4.1.1 Adaptive Element Director and Delegate
	4.1.2 Message Passing
	4.1.3 Push Communication
	4.1.4 Pull Communication
	4.1.5 Element Activation
	4.1.6 Agnostic Port Mode

	4.2 Interaction Contracts
	4.2.1 Motivation
	4.2.2 Prerequisites
	4.2.3 Definition and Properties of an Interaction Contract
	4.2.4 Interaction Contracts for Composites
	4.2.5 Consistency
	4.2.6 Determinacy
	4.2.7 Completeness
	4.2.8 Activation Methods and Adaptive Element Acts

	4.3 Summary

	5 The Actress Modeling Environment
	5.1 Modeling Support
	5.1.1 Why a Domain-specific Language?
	5.1.2 xFCDL in a Nutshell: Modeling FCL Architectures
	5.1.3 xFCDL in a Nutshell: Adaptive Element Implementation
	5.1.4 xFCDL to JVM Model Transformation
	5.1.5 xFCDL to FCDL Transformation

	5.2 Code Generation Support
	5.2.1 Code Generator
	5.2.2 The Actress Framework

	5.3 Verification Support
	5.3.1 Model Consistency Checking
	5.3.2 External Verification

	5.4 Integrated Development with Actress
	5.5 Summary

	6 Evaluation
	6.1 Experimental Case Studies
	6.1.1 Why HTC Case Studies?
	6.1.2 Case Study 1: HTCondor Local Job Submission Overload Control
	6.1.3 Case Study 2: HTCondor Distributed Job Submission Overload Control

	6.2 Assessing FCDL and the Actress Modeling Environment
	6.2.1 Application
	6.2.2 Self-Adaptive Characteristics and Capabilities
	6.2.3 Quality Attributes
	6.2.4 Limitations
	6.2.5 Discussion

	6.3 Summary

	7 Conclusions and Perspectives
	I Appendices
	A FCDL Reference
	A.1 FCDL Graphical Notation
	A.2 FCDL Abstract Syntax: Types Packages
	A.3 FCDL Abstract Syntax: Instances Package
	A.4 Scala Implementation of Interaction Contract Inference

	B xFCDL Reference
	B.1 Abstract Syntax
	B.2 Concrete Syntax
	B.3 xFCDL to FCDL Transformation Rules

	C Running Scenario Implementation
	C.1 Running Example xFCDL Definitions
	C.2 PeriodicTrigger Implementation
	C.2.1 Adaptive Element Delegate
	C.2.2 Adaptive Element Act

	C.3 ApacheQOS Composite Launcher
	C.4 UtilizationMonitor Composite Delegate

	D Experimental Case Studies Implementation
	D.1 Case Study 1: HTCondor Local Job Submission Overload Control
	D.1.1 xFCDL Code
	D.1.2 Interaction Contracts

	D.2 Case Study 2: HTCondor Distributed Job Submission Overload Control
	D.2.1 xFCDL Code
	D.2.2 Interaction Contracts

	Bibliography

